Study on the Current State of Research in the Field of Titanium Aluminides Milling Processes

Article Preview

Abstract:

Recently, there has been a significant interest in the research and industrial application of titanium aluminides. These alloys present great relevance in the aerospace and automotive sectors, where machining processes for the manufacture of high-dimensional precision parts are a fundamental aspect. The interest in the use of these alloys is since they combine a very low density, lower than the Ti6Al4V alloy typically used in these applications, and exceptional mechanical properties at high temperatures. However, titanium aluminides present great difficulties to be machined, being classified as a difficult-to-cut material, as they have high hardness and brittleness, low thermal conductivity, and high chemical reactivity. In the last decade, research on the machining processes of these intermetallic composites has been carried out, although few published works can be found. In particular, research on milling processes is incipient, and further progress is needed in the study and characterization of the process. In this work, a review of the state of the art is carried out to establish the achievements made concerning technological parameters, improvements with the application of sustainable lubrication systems, and the efficiency of the process in terms of tool wear and cutting temperature. In this way, future lines of research in this field would be established. In short, the results obtained aim at a further definition of the tribological system involved in titanium aluminide milling, the use of cryogenic and mixed MQL-cryogenic lubrication, and the definition of tool configurations that allow higher machining speeds to be achieved.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-13

Citation:

Online since:

September 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Clemens, S. Mayer, Design, processing, microstructure, properties, and applications of advanced intermetallic TiAl alloys, Adv. Eng. Mater. 15 (2013) 191-215.

DOI: 10.1002/adem.201200231

Google Scholar

[2] S. Mayer, P. Erdely, F.D. Fischer, D. Holec, M. Kastenhuber, T. Klein, H. Clemens, Intermetallic β-solidifying γ-TiAl based alloys - From fundamental research to application, Adv. Eng. Mater. 19 (2017) UNSP 1600735.

DOI: 10.1002/adem.201600735

Google Scholar

[3] M. Peters, J. Kumpfert, C.H. Ward, C. Leyens, Titanium alloys for aerospace applications, in: C. Leyens, M. Peters (Eds.), Titanium and Titanium Alloys: Fundamentals and Applications, John Wiley and Sons, 2003, pp.333-350.

DOI: 10.1002/3527602119.ch13

Google Scholar

[4] J.C. Williams, R.R. Boyer, Opportunities and issues in the application of titanium alloys for aerospace components, Metals 10 (2020) 705.

DOI: 10.3390/met10060705

Google Scholar

[5] A.P. Mouritz, Introduction to aerospace materials, Woodhead Publishing Limited, Sawston, Cambridge, 2012.

Google Scholar

[6] D.K. Aspinwal, R.C. Dewes, A.L. Mantle, The machining of y-TiAl intermetallic alloys, CIRP Ann. 54 (2005) 99-104.

DOI: 10.1016/s0007-8506(07)60059-6

Google Scholar

[7] A.P. Mouritz, Titanium alloys for aerospace structures and engines, in: Introduction to Aerospace Materials. Woodhead Publishing Limited, Cambridge, UK: Elsevier, 2012, p.202–223.

DOI: 10.1533/9780857095152.202

Google Scholar

[8] R.K. Gupta, Pant B., Sinha P.P., Theory and Practice of gamma + alpha(2) Ti Aluminide: A Review, Trans. Indian Inst. Met. 67 (2014) 143-165.

DOI: 10.1007/s12666-013-0334-y

Google Scholar

[9] F. Appel, R. Wagner, V. Kumar, Intermetallics: Titanium Aluminides, in: Reference Module in Materials Science and Materials Engineering. Elsevier Inc., 2017, 4246-4264.

DOI: 10.1016/b978-0-12-803581-8.02542-x

Google Scholar

[10] W. Chen, Z. Li, Additive manufacturing of titanium aluminides, in: F. Froes, R. Boyer (Eds.), Additive Manufacturing for the Aerospace Industry, Elsevier Inc., 2019, pp.235-263.

DOI: 10.1016/b978-0-12-814062-8.00013-3

Google Scholar

[11] F. Appel, M. Oehring, γ-Titanium aluminide alloys: alloy design and properties, in: C. Leyens, M. Peters (Eds.), Titanium and Titanium Alloys: Fundamentals and Applications, John Wiley and Sons, 2003, pp.89-152.

DOI: 10.1002/3527602119.ch4

Google Scholar

[12] B.P. Bewlay, S. Nag, A. Suzuki, M.J. Weimer, TiAl alloys in commercial aircraft engines, Mater. High Temp. 33 (2016) 549-559.

DOI: 10.1080/09603409.2016.1183068

Google Scholar

[13] B. Blakey-Milner, P. Gradl, G. Snedden, M. Brooks, J. Pitot, E. Lopez, M. Leary, F. Berto, A. du Plessis, Metal additive manufacturing in aerospace: A review, Mater. Des. 209 (2021) 110008.

DOI: 10.1016/j.matdes.2021.110008

Google Scholar

[14] M. Matsuo, Developments in processing technology of gamma titanium aluminides for potential application to airframe structures, ISIJ Int. 31 (1991) 1212-1222.

DOI: 10.2355/isijinternational.31.1212

Google Scholar

[15] X.H. Wu, Review of alloy and process development of TiAl alloys, Intermetallics 14 (2006) 1114-1122.

DOI: 10.1016/j.intermet.2005.10.019

Google Scholar

[16] K. Kothari, R. Radhakrishnan, N.M. Wereley, Advances in gamma titanium aluminides and their manufacturing techniques, Prog. Aerosp. Sci. 55 (2012) 1–16.

DOI: 10.1016/j.paerosci.2012.04.001

Google Scholar

[17] H. Clemens, W. Smarsly, V. Guther, S. Mayer, Advanced intermetallic titanium aluminides, in: V. Venkatesh, A.L. Pilchak, J.E. Allison, et al. (Eds.), Proceedings of the 13th World Conference on Titanium, 2015, pp.1193-1200.

DOI: 10.1002/9781119296126.ch203

Google Scholar

[18] Y.W. Kim, S.L. Kim, Advances in gammalloy materials – processes - application technology: Successes, dilemmas, and future, JOM 70 (2018) 553-560.

DOI: 10.1007/s11837-018-2747-x

Google Scholar

[19] M.K. Yadav, A.N. Siddiquee, Z.A. Khan, Fabrication of promising material 'titanium aluminide': methods and issues (a status report), Mater. Res. Express. 5 (2018) 116504.

DOI: 10.1088/2053-1591/aadb2a

Google Scholar

[20] R. Wartbichler, T. Maiwald-Immer, F. Puerstl, H. Clemens, Laser powder bed fusion of intermetallic titanium aluminide alloys using a novel process chamber heating system: a study on feasibility and microstructural optimization for creep performance, Metals 12 (2022) 2087.

DOI: 10.3390/met12122087

Google Scholar

[21] H. Clemens, S. Mayer, Intermetallic titanium aluminides in aerospace applications - processing, microstructure and properties, Mater. High Temp. 33 (2016) 560-570.

DOI: 10.1080/09603409.2016.1163792

Google Scholar

[22] S.D. Castellanos, A.J. Cavaleiro, A.M.P. de Jesus, R. Neto, J. Lino Alves, Machinability of titanium aluminides: A review, Proc. IMechE. Part L: J. Materials: Design and Applications 233 (2019) 426-451.

DOI: 10.1177/1464420718809386

Google Scholar

[23] M. Kastenhuber, B. Rashkova, H. Clemens, S. Mayer, Enhancement of creep properties and microstructural stability of intermetallic β-solidifying γ-TiAl based alloys, Intermetallics 63 (2015) 19-26.

DOI: 10.1016/j.intermet.2015.03.017

Google Scholar

[24] O. Genc, R. Unal, Development of gamma titanium aluminide (γ-TiAl) alloys: A review, J. Alloys Compd. 929 (2022) 167262.

DOI: 10.1016/j.jallcom.2022.167262

Google Scholar

[25] A.L. Mantle, D.K. Aspinwall, Surface integrity of a high speed milled gamma titanium aluminide, J. Mater. Process. Technol. 118 (2001) 143-150.

DOI: 10.1016/s0924-0136(01)00914-1

Google Scholar

[26] R.G. Vargas Perez, Wear mechanisms of WC inserts in face milling of gamma titanium aluminides, Wear 259 (2005) 1160–1167.

DOI: 10.1016/j.wear.2005.02.062

Google Scholar

[27] R. Hood, D.K. Aspinwall, C. Sage, W. Voice, High speed ball nose end milling of g-TiAl alloys, Intermetallics 32 (2013) 284-291.

DOI: 10.1016/j.intermet.2012.09.011

Google Scholar

[28] A L. Mantle, D.K. Aspinwall, Cutting force evaluation when high speed end milling a gamma titanium aluminide intermetallic alloy, in: D. G. Morris, S. Naka, P. Caron (Eds.), Intermetallics and Superalloys, WILEY-VCH Verlag GmbH, Weinheim, 2000, pp.209-215.

DOI: 10.1002/3527607285.ch36

Google Scholar

[29] A. Beranoagirre, L.N. López de Lacalle, Optimising the milling of titanium aluminide alloys, Int. J. Mechatron. Manuf. Syst. 3 (2010) 425-436.

DOI: 10.1504/ijmms.2010.036067

Google Scholar

[30] A. Beranoagirre, D. Olvera, L. N. López de Lacalle, Milling of gamma titanium–aluminum alloys, Int. J. Adv. Manuf. Technol. 62 (2012) 83–88.

DOI: 10.1007/s00170-011-3812-6

Google Scholar

[31] A. Beranoagirre, L.N. López de Lacalle, Topography prediction on milling of emerging aeronautical Ti alloys, Phys. Procedia 22 (2011) 136-143.

DOI: 10.1016/j.phpro.2011.11.022

Google Scholar

[32] G. Rotella, P.C. Priarone, S. Rizzuti, L. Settineri, Evaluation of the environmental impact of different lubrorefrigeration conditions in milling of γ-TiAl alloy, in: J. Hesselbach and C. Herrmann (Eds.), Glocalized Solutions for Sustainability in Manufacturing: Proceedings of the 18th CIRP International Conference on Life Cycle Engineering, Technische Universität Braunschweig, Braunschweig, Germany, May 2nd - 4th, 2011, pp.365-370.

DOI: 10.1007/978-3-642-19692-8

Google Scholar

[33] P.C. Priarone, S. Rizzuti, G. Rotella, L. Settineri, Technological and environmental aspects in milling of γ-TiAl, Adv. Mat. Res. 223 (2011) 340-349.

DOI: 10.4028/www.scientific.net/amr.223.340

Google Scholar

[34] P.C. Priarone, S. Rizzuti, L. Settineri, G. Vergnano, Effects of cutting angle, edge preparation, and nano-structured coating on milling performance of a gamma titanium aluminide, J. Mater. Process. Technol. 212 (2012) 2619– 2628.

DOI: 10.1016/j.jmatprotec.2012.07.021

Google Scholar

[35] P.C. Priarone, S. Rizzuti, G. Rotella, L. Settineri, Tool wear and surface quality in milling of a gamma-TiAl intermetallic, Int. J. Adv. Manuf. Technol. 61 (2012) 25–33.

DOI: 10.1007/s00170-011-3691-x

Google Scholar

[36] D.K. Aspinwall, A.L. Mantle, W.K. Chan, R. Hood, S.L. Soo, Cutting temperatures when ball nose end milling gamma-TiAl intermetallic alloys, CIRP Ann. - Manuf. Technol. 62 (2013) 75-78.

DOI: 10.1016/j.cirp.2013.03.007

Google Scholar

[37] G. Radkowski, J. Sep, Surface quality of a milled gamma titanium aluminide for aeronautical applications, Manag. Prod. Eng. Rev. 5 (2014) 60-65.

Google Scholar

[38] L. Settineri, P.C. Priarone, M. Arft, D. Lung, T. Stoyanov, An evaluative approach to correlate machinability, microstructures, and material properties of gamma titanium aluminides, CIRP Ann. - Manuf. Technol. 63 (2014) 57-60.

DOI: 10.1016/j.cirp.2014.03.068

Google Scholar

[39] R. Hood, D.K. Aspinwall, S.L. Soo, A.L. Mantle, D. Novovic, Workpiece surface integrity when slot milling g-TiAl intermetallic alloy, CIRP Ann. - Manuf. Technol. 63 (2014) 53-56.

DOI: 10.1016/j.cirp.2014.03.071

Google Scholar

[40] P.C. Priarone, M. Robiglio, L. Settineri, V. Tebaldo, Milling and turning of titanium aluminides by using minimum quantity lubrication, Procedia CIRP 24 (2014) 62 – 67.

DOI: 10.1016/j.procir.2014.07.147

Google Scholar

[41] S. Kolahdouz, B. Arezoo, M. Hadi, Surface integrity in high-speed milling of gamma titanium aluminide under MQL cutting conditions, Proceedings of The 5th Conference on Thermal Power Plants (lPGC2014), June 10-11, 2014, Shahid Beheshti University, Tehran, Iran, pp.62-69.

DOI: 10.1109/ctpp.2014.7040696

Google Scholar

[42] S. Kolahdouz, M. Hadi, B. Arezoo, S. Zamani, Investigation of surface integrity in high speed milling of gamma titanium aluminide under dry and minimum quantity lubricant conditions, Procedia CIRP 26 (2015) 367 – 372.

DOI: 10.1016/j.procir.2014.08.016

Google Scholar

[43] J.X. Ren, Z.Y. Zhai, K.N. Shi, J.H. Zhou, J.X. Yang, J. Cai, Tool determination and geometry parameter optimization of carbide tool in high-speed milling of third-generation gamma-TiAl alloy, J. Braz. Soc. Mech. Sci. Eng. 40 (2018) 491.

DOI: 10.1007/s40430-018-1408-x

Google Scholar

[44] Z. Wang, Y. Liu, Study of surface integrity of milled gamma titanium aluminide, J. Manuf. Process. 56 (2020) 806-819.

DOI: 10.1016/j.jmapro.2020.05.021

Google Scholar

[45] Y. Zhang, X.P. Wang, F.T. Kong, L.L. Sun, Y.Y. Chen, A high-performance beta-solidifying TiAl alloy sheet: Multi-type lamellar microstructure and phase transformation, Mater. Charact. 138 (2018) 136-144.

DOI: 10.1016/j.matchar.2018.02.005

Google Scholar

[46] N.F. Mogale, W.R. Matizamhuka, Spark plasma sintering of titanium aluminides: a progress review on processing, structure-property relations, alloy development and challenges, Metals 10 (2020) 1080.

DOI: 10.3390/met10081080

Google Scholar

[47] E. García-Martínez, V. Miguel, A. Martínez-Martínez, J. Naranjo, J. Coello, Tribological characterization of tribosystem Ti48Al2Cr2Nb-coated/uncoated carbide tools at different temperatures, WEAR. 484-485 (2021), 203992.

DOI: 10.1016/j.wear.2021.203992

Google Scholar

[48] E. García-Martínez, V. Miguel, A. Martínez-Martínez, J. Ayllón, A new model to predict the tool life in turning of titanium aluminides, Int. J. Adv. Manuf. Tech. (2023).

DOI: 10.1007/s00170-023-11090-0

Google Scholar

[49] E. Garcia-Martinez, V. Miguel, A. Martinez-Martinez, J. Coello, J.A. Naranjo, M.C. Manjabacas, Optimization of the dry turning process of Ti48Al2Cr2Nb aluminide based on the cutting tool configuration, Materials 4 (2022) 1472.

DOI: 10.3390/ma15041472

Google Scholar

[50] E. García-Martínez, A. Martínez-Martínez, M.C. Manjabacas, V. Miguel, Proposal of a combined experimental-simulation methodology for the evaluation of machining temperature in turning processes, Measurement 189 (2022) 110632.

DOI: 10.1016/j.measurement.2021.110632

Google Scholar