[1]
H. Clemens, S. Mayer, Design, processing, microstructure, properties, and applications of advanced intermetallic TiAl alloys, Adv. Eng. Mater. 15 (2013) 191-215.
DOI: 10.1002/adem.201200231
Google Scholar
[2]
S. Mayer, P. Erdely, F.D. Fischer, D. Holec, M. Kastenhuber, T. Klein, H. Clemens, Intermetallic β-solidifying γ-TiAl based alloys - From fundamental research to application, Adv. Eng. Mater. 19 (2017) UNSP 1600735.
DOI: 10.1002/adem.201600735
Google Scholar
[3]
M. Peters, J. Kumpfert, C.H. Ward, C. Leyens, Titanium alloys for aerospace applications, in: C. Leyens, M. Peters (Eds.), Titanium and Titanium Alloys: Fundamentals and Applications, John Wiley and Sons, 2003, pp.333-350.
DOI: 10.1002/3527602119.ch13
Google Scholar
[4]
J.C. Williams, R.R. Boyer, Opportunities and issues in the application of titanium alloys for aerospace components, Metals 10 (2020) 705.
DOI: 10.3390/met10060705
Google Scholar
[5]
A.P. Mouritz, Introduction to aerospace materials, Woodhead Publishing Limited, Sawston, Cambridge, 2012.
Google Scholar
[6]
D.K. Aspinwal, R.C. Dewes, A.L. Mantle, The machining of y-TiAl intermetallic alloys, CIRP Ann. 54 (2005) 99-104.
DOI: 10.1016/s0007-8506(07)60059-6
Google Scholar
[7]
A.P. Mouritz, Titanium alloys for aerospace structures and engines, in: Introduction to Aerospace Materials. Woodhead Publishing Limited, Cambridge, UK: Elsevier, 2012, p.202–223.
DOI: 10.1533/9780857095152.202
Google Scholar
[8]
R.K. Gupta, Pant B., Sinha P.P., Theory and Practice of gamma + alpha(2) Ti Aluminide: A Review, Trans. Indian Inst. Met. 67 (2014) 143-165.
DOI: 10.1007/s12666-013-0334-y
Google Scholar
[9]
F. Appel, R. Wagner, V. Kumar, Intermetallics: Titanium Aluminides, in: Reference Module in Materials Science and Materials Engineering. Elsevier Inc., 2017, 4246-4264.
DOI: 10.1016/b978-0-12-803581-8.02542-x
Google Scholar
[10]
W. Chen, Z. Li, Additive manufacturing of titanium aluminides, in: F. Froes, R. Boyer (Eds.), Additive Manufacturing for the Aerospace Industry, Elsevier Inc., 2019, pp.235-263.
DOI: 10.1016/b978-0-12-814062-8.00013-3
Google Scholar
[11]
F. Appel, M. Oehring, γ-Titanium aluminide alloys: alloy design and properties, in: C. Leyens, M. Peters (Eds.), Titanium and Titanium Alloys: Fundamentals and Applications, John Wiley and Sons, 2003, pp.89-152.
DOI: 10.1002/3527602119.ch4
Google Scholar
[12]
B.P. Bewlay, S. Nag, A. Suzuki, M.J. Weimer, TiAl alloys in commercial aircraft engines, Mater. High Temp. 33 (2016) 549-559.
DOI: 10.1080/09603409.2016.1183068
Google Scholar
[13]
B. Blakey-Milner, P. Gradl, G. Snedden, M. Brooks, J. Pitot, E. Lopez, M. Leary, F. Berto, A. du Plessis, Metal additive manufacturing in aerospace: A review, Mater. Des. 209 (2021) 110008.
DOI: 10.1016/j.matdes.2021.110008
Google Scholar
[14]
M. Matsuo, Developments in processing technology of gamma titanium aluminides for potential application to airframe structures, ISIJ Int. 31 (1991) 1212-1222.
DOI: 10.2355/isijinternational.31.1212
Google Scholar
[15]
X.H. Wu, Review of alloy and process development of TiAl alloys, Intermetallics 14 (2006) 1114-1122.
DOI: 10.1016/j.intermet.2005.10.019
Google Scholar
[16]
K. Kothari, R. Radhakrishnan, N.M. Wereley, Advances in gamma titanium aluminides and their manufacturing techniques, Prog. Aerosp. Sci. 55 (2012) 1–16.
DOI: 10.1016/j.paerosci.2012.04.001
Google Scholar
[17]
H. Clemens, W. Smarsly, V. Guther, S. Mayer, Advanced intermetallic titanium aluminides, in: V. Venkatesh, A.L. Pilchak, J.E. Allison, et al. (Eds.), Proceedings of the 13th World Conference on Titanium, 2015, pp.1193-1200.
DOI: 10.1002/9781119296126.ch203
Google Scholar
[18]
Y.W. Kim, S.L. Kim, Advances in gammalloy materials – processes - application technology: Successes, dilemmas, and future, JOM 70 (2018) 553-560.
DOI: 10.1007/s11837-018-2747-x
Google Scholar
[19]
M.K. Yadav, A.N. Siddiquee, Z.A. Khan, Fabrication of promising material 'titanium aluminide': methods and issues (a status report), Mater. Res. Express. 5 (2018) 116504.
DOI: 10.1088/2053-1591/aadb2a
Google Scholar
[20]
R. Wartbichler, T. Maiwald-Immer, F. Puerstl, H. Clemens, Laser powder bed fusion of intermetallic titanium aluminide alloys using a novel process chamber heating system: a study on feasibility and microstructural optimization for creep performance, Metals 12 (2022) 2087.
DOI: 10.3390/met12122087
Google Scholar
[21]
H. Clemens, S. Mayer, Intermetallic titanium aluminides in aerospace applications - processing, microstructure and properties, Mater. High Temp. 33 (2016) 560-570.
DOI: 10.1080/09603409.2016.1163792
Google Scholar
[22]
S.D. Castellanos, A.J. Cavaleiro, A.M.P. de Jesus, R. Neto, J. Lino Alves, Machinability of titanium aluminides: A review, Proc. IMechE. Part L: J. Materials: Design and Applications 233 (2019) 426-451.
DOI: 10.1177/1464420718809386
Google Scholar
[23]
M. Kastenhuber, B. Rashkova, H. Clemens, S. Mayer, Enhancement of creep properties and microstructural stability of intermetallic β-solidifying γ-TiAl based alloys, Intermetallics 63 (2015) 19-26.
DOI: 10.1016/j.intermet.2015.03.017
Google Scholar
[24]
O. Genc, R. Unal, Development of gamma titanium aluminide (γ-TiAl) alloys: A review, J. Alloys Compd. 929 (2022) 167262.
DOI: 10.1016/j.jallcom.2022.167262
Google Scholar
[25]
A.L. Mantle, D.K. Aspinwall, Surface integrity of a high speed milled gamma titanium aluminide, J. Mater. Process. Technol. 118 (2001) 143-150.
DOI: 10.1016/s0924-0136(01)00914-1
Google Scholar
[26]
R.G. Vargas Perez, Wear mechanisms of WC inserts in face milling of gamma titanium aluminides, Wear 259 (2005) 1160–1167.
DOI: 10.1016/j.wear.2005.02.062
Google Scholar
[27]
R. Hood, D.K. Aspinwall, C. Sage, W. Voice, High speed ball nose end milling of g-TiAl alloys, Intermetallics 32 (2013) 284-291.
DOI: 10.1016/j.intermet.2012.09.011
Google Scholar
[28]
A L. Mantle, D.K. Aspinwall, Cutting force evaluation when high speed end milling a gamma titanium aluminide intermetallic alloy, in: D. G. Morris, S. Naka, P. Caron (Eds.), Intermetallics and Superalloys, WILEY-VCH Verlag GmbH, Weinheim, 2000, pp.209-215.
DOI: 10.1002/3527607285.ch36
Google Scholar
[29]
A. Beranoagirre, L.N. López de Lacalle, Optimising the milling of titanium aluminide alloys, Int. J. Mechatron. Manuf. Syst. 3 (2010) 425-436.
DOI: 10.1504/ijmms.2010.036067
Google Scholar
[30]
A. Beranoagirre, D. Olvera, L. N. López de Lacalle, Milling of gamma titanium–aluminum alloys, Int. J. Adv. Manuf. Technol. 62 (2012) 83–88.
DOI: 10.1007/s00170-011-3812-6
Google Scholar
[31]
A. Beranoagirre, L.N. López de Lacalle, Topography prediction on milling of emerging aeronautical Ti alloys, Phys. Procedia 22 (2011) 136-143.
DOI: 10.1016/j.phpro.2011.11.022
Google Scholar
[32]
G. Rotella, P.C. Priarone, S. Rizzuti, L. Settineri, Evaluation of the environmental impact of different lubrorefrigeration conditions in milling of γ-TiAl alloy, in: J. Hesselbach and C. Herrmann (Eds.), Glocalized Solutions for Sustainability in Manufacturing: Proceedings of the 18th CIRP International Conference on Life Cycle Engineering, Technische Universität Braunschweig, Braunschweig, Germany, May 2nd - 4th, 2011, pp.365-370.
DOI: 10.1007/978-3-642-19692-8
Google Scholar
[33]
P.C. Priarone, S. Rizzuti, G. Rotella, L. Settineri, Technological and environmental aspects in milling of γ-TiAl, Adv. Mat. Res. 223 (2011) 340-349.
DOI: 10.4028/www.scientific.net/amr.223.340
Google Scholar
[34]
P.C. Priarone, S. Rizzuti, L. Settineri, G. Vergnano, Effects of cutting angle, edge preparation, and nano-structured coating on milling performance of a gamma titanium aluminide, J. Mater. Process. Technol. 212 (2012) 2619– 2628.
DOI: 10.1016/j.jmatprotec.2012.07.021
Google Scholar
[35]
P.C. Priarone, S. Rizzuti, G. Rotella, L. Settineri, Tool wear and surface quality in milling of a gamma-TiAl intermetallic, Int. J. Adv. Manuf. Technol. 61 (2012) 25–33.
DOI: 10.1007/s00170-011-3691-x
Google Scholar
[36]
D.K. Aspinwall, A.L. Mantle, W.K. Chan, R. Hood, S.L. Soo, Cutting temperatures when ball nose end milling gamma-TiAl intermetallic alloys, CIRP Ann. - Manuf. Technol. 62 (2013) 75-78.
DOI: 10.1016/j.cirp.2013.03.007
Google Scholar
[37]
G. Radkowski, J. Sep, Surface quality of a milled gamma titanium aluminide for aeronautical applications, Manag. Prod. Eng. Rev. 5 (2014) 60-65.
Google Scholar
[38]
L. Settineri, P.C. Priarone, M. Arft, D. Lung, T. Stoyanov, An evaluative approach to correlate machinability, microstructures, and material properties of gamma titanium aluminides, CIRP Ann. - Manuf. Technol. 63 (2014) 57-60.
DOI: 10.1016/j.cirp.2014.03.068
Google Scholar
[39]
R. Hood, D.K. Aspinwall, S.L. Soo, A.L. Mantle, D. Novovic, Workpiece surface integrity when slot milling g-TiAl intermetallic alloy, CIRP Ann. - Manuf. Technol. 63 (2014) 53-56.
DOI: 10.1016/j.cirp.2014.03.071
Google Scholar
[40]
P.C. Priarone, M. Robiglio, L. Settineri, V. Tebaldo, Milling and turning of titanium aluminides by using minimum quantity lubrication, Procedia CIRP 24 (2014) 62 – 67.
DOI: 10.1016/j.procir.2014.07.147
Google Scholar
[41]
S. Kolahdouz, B. Arezoo, M. Hadi, Surface integrity in high-speed milling of gamma titanium aluminide under MQL cutting conditions, Proceedings of The 5th Conference on Thermal Power Plants (lPGC2014), June 10-11, 2014, Shahid Beheshti University, Tehran, Iran, pp.62-69.
DOI: 10.1109/ctpp.2014.7040696
Google Scholar
[42]
S. Kolahdouz, M. Hadi, B. Arezoo, S. Zamani, Investigation of surface integrity in high speed milling of gamma titanium aluminide under dry and minimum quantity lubricant conditions, Procedia CIRP 26 (2015) 367 – 372.
DOI: 10.1016/j.procir.2014.08.016
Google Scholar
[43]
J.X. Ren, Z.Y. Zhai, K.N. Shi, J.H. Zhou, J.X. Yang, J. Cai, Tool determination and geometry parameter optimization of carbide tool in high-speed milling of third-generation gamma-TiAl alloy, J. Braz. Soc. Mech. Sci. Eng. 40 (2018) 491.
DOI: 10.1007/s40430-018-1408-x
Google Scholar
[44]
Z. Wang, Y. Liu, Study of surface integrity of milled gamma titanium aluminide, J. Manuf. Process. 56 (2020) 806-819.
DOI: 10.1016/j.jmapro.2020.05.021
Google Scholar
[45]
Y. Zhang, X.P. Wang, F.T. Kong, L.L. Sun, Y.Y. Chen, A high-performance beta-solidifying TiAl alloy sheet: Multi-type lamellar microstructure and phase transformation, Mater. Charact. 138 (2018) 136-144.
DOI: 10.1016/j.matchar.2018.02.005
Google Scholar
[46]
N.F. Mogale, W.R. Matizamhuka, Spark plasma sintering of titanium aluminides: a progress review on processing, structure-property relations, alloy development and challenges, Metals 10 (2020) 1080.
DOI: 10.3390/met10081080
Google Scholar
[47]
E. García-Martínez, V. Miguel, A. Martínez-Martínez, J. Naranjo, J. Coello, Tribological characterization of tribosystem Ti48Al2Cr2Nb-coated/uncoated carbide tools at different temperatures, WEAR. 484-485 (2021), 203992.
DOI: 10.1016/j.wear.2021.203992
Google Scholar
[48]
E. García-Martínez, V. Miguel, A. Martínez-Martínez, J. Ayllón, A new model to predict the tool life in turning of titanium aluminides, Int. J. Adv. Manuf. Tech. (2023).
DOI: 10.1007/s00170-023-11090-0
Google Scholar
[49]
E. Garcia-Martinez, V. Miguel, A. Martinez-Martinez, J. Coello, J.A. Naranjo, M.C. Manjabacas, Optimization of the dry turning process of Ti48Al2Cr2Nb aluminide based on the cutting tool configuration, Materials 4 (2022) 1472.
DOI: 10.3390/ma15041472
Google Scholar
[50]
E. García-Martínez, A. Martínez-Martínez, M.C. Manjabacas, V. Miguel, Proposal of a combined experimental-simulation methodology for the evaluation of machining temperature in turning processes, Measurement 189 (2022) 110632.
DOI: 10.1016/j.measurement.2021.110632
Google Scholar