Preliminary Evaluation of a Multipass Strategy in Abrasive Waterjet Machining of an Alloy UNS A92024

Article Preview

Abstract:

Abrasive waterjet cutting is a valuable method for removing material without causing thermal damage, making it suitable for machining materials of different thicknesses and minimising waste. However, machining thicker materials requires higher flow rates and pressure, resulting in increased energy consumption and surface defects that increase costs. This study proposes a multi-pass strategy to improve the performance of abrasive waterjet machining. The study aims to investigate the impact of the number of passes on the efficiency of machining a thick UNS A92024 alloy. Surface integrity will be evaluated from two perspectives: macrogeometry (such as machining depth and taper) using image processing, and microgeometry (surface roughness). The study will also analyse the relationship between the number of passes and traverse speed to identify the optimal combination and develop a predictive model to enhance overall process performance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

23-32

Citation:

Online since:

September 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Pilný, L. de Chiffre, M. Píška, M.F. Villumsen, Hole quality and burr reduction in drilling aluminium sheets, CIRP J Manuf Sci Technol. 5 (2012) 102–107.

DOI: 10.1016/j.cirpj.2012.03.005

Google Scholar

[2] R. Zitoune, V. Krishnaraj, F. Collombet, Study of drilling of composite material and aluminium stack, Compos Struct. 92 (2010) 1246–1255.

DOI: 10.1016/j.compstruct.2009.10.010

Google Scholar

[3] A. Gómez-Parra, M. Álvarez-Alcón, J. Salguero, M. Batista, M. Marcos, Analysis of the evolution of the Built-Up Edge and Built-Up Layer formation mechanisms in the dry turning of aeronautical aluminium alloys, Wear. 302 (2013) 1209–1218.

DOI: 10.1016/j.wear.2012.12.001

Google Scholar

[4] Z. Zhu, K. Guo, J. Sun, J. Li, Y. Liu, Y. Zheng, L. Chen, Evaluation of novel tool geometries in dry drilling aluminium 2024-T351/titanium Ti6Al4V stack, J Mater Process Technol. 259 (2018) 270–281.

DOI: 10.1016/j.jmatprotec.2018.04.044

Google Scholar

[5] X. Liang, D. Wu, Y. Gao, K. Chen, Investigation on the non-coaxiality in the drilling of carbon-fibre-reinforced plastic and aluminium stacks, Int J Mach Tools Manuf. 125 (2018) 1–10.

DOI: 10.1016/j.ijmachtools.2017.11.001

Google Scholar

[6] F. Bañón, A. Sambruno, B. Simonet, J. Salguero, M. Marcos, Preliminary study of the dry drilling process of CFRP/UNS A92024 stacks held together by adhesives, Procedia Manuf. 13 (2017) 211–218.

DOI: 10.1016/j.promfg.2017.09.049

Google Scholar

[7] P.Fco. Mayuet Ares, L. Rodríguez-Parada, A. Gómez-Parra, M. Batista, Characterization and Defect Analysis of Machined Regions in Al-SiC Metal Matrix Composites Using an Abrasive Water Jet Machining Process, Applied Sciences. 10 (2020) 1512.

DOI: 10.3390/app10041512

Google Scholar

[8] N. Yuvaraj, M.P. Kumar, Cutting of aluminium alloy with abrasive water jet and cryogenic assisted abrasive water jet : A comparative study of the surface integrity approach, Wear. 362–363 (2016) 18–32.

DOI: 10.1016/j.wear.2016.05.008

Google Scholar

[9] F. Bañon, A. Sambruno, A. Gómez, P.F. Mayuet, Preliminary study of abrasive water jet texturing on low thickness UNS A92024 alloy sheets, IOP Conf Ser Mater Sci Eng. 1193 (2021) 012027.

DOI: 10.1088/1757-899X/1193/1/012027

Google Scholar

[10] I.M. Hlavacova, V. Geryk, Abrasives for water-jet cutting of high-strength and thick hard materials, International Journal of Advanced Manufacturing Technology. 90 (2017) 1217–1224.

DOI: 10.1007/s00170-016-9462-y

Google Scholar

[11] A. v. Meshcheryakov, A.P. Shulepov, Productivity of abrasive water-jet machining, Russian Engineering Research. 37 (2017) 747–750.

DOI: 10.3103/S1068798X17080111

Google Scholar

[12] S.K. Majumder, B. Mandal, S. Das, P.K. Das, An Experimental Investigation on Surface Roughness Achieved During Abrasive Water-Jet Machining of Low Carbon Steel, Journal of the Association of Engineers, India. 87 (2017) 26.

DOI: 10.22485/jaei/2017/v87/i1-2/153429

Google Scholar

[13] A. Perec, Environmental aspects of abrasive water jet cutting, Rocznik Ochrona Srodowiska. 20 (2018) 258–274.

Google Scholar

[14] M. Du, Y. Guo, H. Wang, H. Dong, W. Liang, H. Wu, Y. Ke, Modeling of the cutting front profile in abrasive water jet machining based on the energy balance approach, Precis Eng. 79 (2023) 210–220.

DOI: 10.1016/j.precisioneng.2022.10.009

Google Scholar

[15] R. Pahuja, R. M., Abrasive water jet machining of Titanium (Ti6Al4V)–CFRP stacks – A semi-analytical modeling approach in the prediction of kerf geometry, J Manuf Process. 39 (2019) 327–337.

DOI: 10.1016/j.jmapro.2019.01.041

Google Scholar

[16] S. Wang, D. Hu, F. Yang, P. Lin, Investigation on kerf taper in abrasive waterjet machining of aluminium alloy 6061-T6, Journal of Materials Research and Technology. 15 (2021) 427–433.

DOI: 10.1016/j.jmrt.2021.08.012

Google Scholar

[17] S. Lou, Z. Zhu, W. Zeng, C. Majewski, P.J. Scott, X. Jiang, Material ratio curve of 3D surface topography of additively manufactured parts: An attempt to characterise open surface pores, Surf Topogr. 9 (2021).

DOI: 10.1088/2051-672X/abedf9

Google Scholar

[18] A. Hejjaji, R. Zitoune, L. Crouzeix, S. le Roux, F. Collombet, Surface and machining induced damage characterization of abrasive water jet milled carbon/epoxy composite specimens and their impact on tensile behavior, Wear. 376–377 (2017) 1356–1364.

DOI: 10.1016/j.wear.2017.02.024

Google Scholar

[19] S. Xiao, P. Wang, H. Gao, D. Soulat, A study of abrasive waterjet multi-pass cutting on kerf quality of carbon fiber-reinforced plastics, International Journal of Advanced Manufacturing Technology. 105 (2019) 4527–4537.

DOI: 10.1007/s00170-018-3177-1

Google Scholar

[20] P. Karmiris-Obratański, N.E. Karkalos, R. Kudelski, E.L. Papazoglou, A.P. Markopoulos, On the effect of multiple passes on kerf characteristics and efficiency of abrasive waterjet cutting, Metals (Basel). 11 (2021) 1–14.

DOI: 10.3390/met11010074

Google Scholar

[21] M.S. Hewidy, T.A. El-Taweel, M.F. El-Safty, Modelling the machining parameters of wire electrical discharge machining of Inconel 601 using RSM, J Mater Process Technol. 169 (2005) 328–336.

DOI: 10.1016/j.jmatprotec.2005.04.078

Google Scholar

[22] G. Kibria, S. Chatterjee, I. Shivakoti, B. Doloi, B. Bhattacharyya, RSM Based Experimental Investigation and Analysis into Laser Surface Texturing on Titanium using Pulsed Nd:YAG Laser, in: IOP Conf Ser Mater Sci Eng, Institute of Physics Publishing, 2018.

DOI: 10.1088/1757-899X/377/1/012203

Google Scholar

[23] P. Shandilya, P.K. Jain, N.K. Jain, RSM and ANN modeling approaches for predicting average cutting speed during WEDM of SiCp/6061 Al MMC, Procedia Eng. 64 (2013) 767–774.

DOI: 10.1016/j.proeng.2013.09.152

Google Scholar