[1]
L. Pilný, L. de Chiffre, M. Píška, M.F. Villumsen, Hole quality and burr reduction in drilling aluminium sheets, CIRP J Manuf Sci Technol. 5 (2012) 102–107.
DOI: 10.1016/j.cirpj.2012.03.005
Google Scholar
[2]
R. Zitoune, V. Krishnaraj, F. Collombet, Study of drilling of composite material and aluminium stack, Compos Struct. 92 (2010) 1246–1255.
DOI: 10.1016/j.compstruct.2009.10.010
Google Scholar
[3]
A. Gómez-Parra, M. Álvarez-Alcón, J. Salguero, M. Batista, M. Marcos, Analysis of the evolution of the Built-Up Edge and Built-Up Layer formation mechanisms in the dry turning of aeronautical aluminium alloys, Wear. 302 (2013) 1209–1218.
DOI: 10.1016/j.wear.2012.12.001
Google Scholar
[4]
Z. Zhu, K. Guo, J. Sun, J. Li, Y. Liu, Y. Zheng, L. Chen, Evaluation of novel tool geometries in dry drilling aluminium 2024-T351/titanium Ti6Al4V stack, J Mater Process Technol. 259 (2018) 270–281.
DOI: 10.1016/j.jmatprotec.2018.04.044
Google Scholar
[5]
X. Liang, D. Wu, Y. Gao, K. Chen, Investigation on the non-coaxiality in the drilling of carbon-fibre-reinforced plastic and aluminium stacks, Int J Mach Tools Manuf. 125 (2018) 1–10.
DOI: 10.1016/j.ijmachtools.2017.11.001
Google Scholar
[6]
F. Bañón, A. Sambruno, B. Simonet, J. Salguero, M. Marcos, Preliminary study of the dry drilling process of CFRP/UNS A92024 stacks held together by adhesives, Procedia Manuf. 13 (2017) 211–218.
DOI: 10.1016/j.promfg.2017.09.049
Google Scholar
[7]
P.Fco. Mayuet Ares, L. Rodríguez-Parada, A. Gómez-Parra, M. Batista, Characterization and Defect Analysis of Machined Regions in Al-SiC Metal Matrix Composites Using an Abrasive Water Jet Machining Process, Applied Sciences. 10 (2020) 1512.
DOI: 10.3390/app10041512
Google Scholar
[8]
N. Yuvaraj, M.P. Kumar, Cutting of aluminium alloy with abrasive water jet and cryogenic assisted abrasive water jet : A comparative study of the surface integrity approach, Wear. 362–363 (2016) 18–32.
DOI: 10.1016/j.wear.2016.05.008
Google Scholar
[9]
F. Bañon, A. Sambruno, A. Gómez, P.F. Mayuet, Preliminary study of abrasive water jet texturing on low thickness UNS A92024 alloy sheets, IOP Conf Ser Mater Sci Eng. 1193 (2021) 012027.
DOI: 10.1088/1757-899X/1193/1/012027
Google Scholar
[10]
I.M. Hlavacova, V. Geryk, Abrasives for water-jet cutting of high-strength and thick hard materials, International Journal of Advanced Manufacturing Technology. 90 (2017) 1217–1224.
DOI: 10.1007/s00170-016-9462-y
Google Scholar
[11]
A. v. Meshcheryakov, A.P. Shulepov, Productivity of abrasive water-jet machining, Russian Engineering Research. 37 (2017) 747–750.
DOI: 10.3103/S1068798X17080111
Google Scholar
[12]
S.K. Majumder, B. Mandal, S. Das, P.K. Das, An Experimental Investigation on Surface Roughness Achieved During Abrasive Water-Jet Machining of Low Carbon Steel, Journal of the Association of Engineers, India. 87 (2017) 26.
DOI: 10.22485/jaei/2017/v87/i1-2/153429
Google Scholar
[13]
A. Perec, Environmental aspects of abrasive water jet cutting, Rocznik Ochrona Srodowiska. 20 (2018) 258–274.
Google Scholar
[14]
M. Du, Y. Guo, H. Wang, H. Dong, W. Liang, H. Wu, Y. Ke, Modeling of the cutting front profile in abrasive water jet machining based on the energy balance approach, Precis Eng. 79 (2023) 210–220.
DOI: 10.1016/j.precisioneng.2022.10.009
Google Scholar
[15]
R. Pahuja, R. M., Abrasive water jet machining of Titanium (Ti6Al4V)–CFRP stacks – A semi-analytical modeling approach in the prediction of kerf geometry, J Manuf Process. 39 (2019) 327–337.
DOI: 10.1016/j.jmapro.2019.01.041
Google Scholar
[16]
S. Wang, D. Hu, F. Yang, P. Lin, Investigation on kerf taper in abrasive waterjet machining of aluminium alloy 6061-T6, Journal of Materials Research and Technology. 15 (2021) 427–433.
DOI: 10.1016/j.jmrt.2021.08.012
Google Scholar
[17]
S. Lou, Z. Zhu, W. Zeng, C. Majewski, P.J. Scott, X. Jiang, Material ratio curve of 3D surface topography of additively manufactured parts: An attempt to characterise open surface pores, Surf Topogr. 9 (2021).
DOI: 10.1088/2051-672X/abedf9
Google Scholar
[18]
A. Hejjaji, R. Zitoune, L. Crouzeix, S. le Roux, F. Collombet, Surface and machining induced damage characterization of abrasive water jet milled carbon/epoxy composite specimens and their impact on tensile behavior, Wear. 376–377 (2017) 1356–1364.
DOI: 10.1016/j.wear.2017.02.024
Google Scholar
[19]
S. Xiao, P. Wang, H. Gao, D. Soulat, A study of abrasive waterjet multi-pass cutting on kerf quality of carbon fiber-reinforced plastics, International Journal of Advanced Manufacturing Technology. 105 (2019) 4527–4537.
DOI: 10.1007/s00170-018-3177-1
Google Scholar
[20]
P. Karmiris-Obratański, N.E. Karkalos, R. Kudelski, E.L. Papazoglou, A.P. Markopoulos, On the effect of multiple passes on kerf characteristics and efficiency of abrasive waterjet cutting, Metals (Basel). 11 (2021) 1–14.
DOI: 10.3390/met11010074
Google Scholar
[21]
M.S. Hewidy, T.A. El-Taweel, M.F. El-Safty, Modelling the machining parameters of wire electrical discharge machining of Inconel 601 using RSM, J Mater Process Technol. 169 (2005) 328–336.
DOI: 10.1016/j.jmatprotec.2005.04.078
Google Scholar
[22]
G. Kibria, S. Chatterjee, I. Shivakoti, B. Doloi, B. Bhattacharyya, RSM Based Experimental Investigation and Analysis into Laser Surface Texturing on Titanium using Pulsed Nd:YAG Laser, in: IOP Conf Ser Mater Sci Eng, Institute of Physics Publishing, 2018.
DOI: 10.1088/1757-899X/377/1/012203
Google Scholar
[23]
P. Shandilya, P.K. Jain, N.K. Jain, RSM and ANN modeling approaches for predicting average cutting speed during WEDM of SiCp/6061 Al MMC, Procedia Eng. 64 (2013) 767–774.
DOI: 10.1016/j.proeng.2013.09.152
Google Scholar