[1]
J.M. Vieira, A.R. Machado, E.O. Ezugwu, Performance of cutting fluids during face milling of steels, J. Mater. Process Technol. 116 (2001) 244-251.
DOI: 10.1016/s0924-0136(01)01010-x
Google Scholar
[2]
F.W. Taylor, The Art of Cutting Metals, Scientific American, 1907.
Google Scholar
[3]
I.S. Jawahir, H. Attia, D. Biermann, J. Duflou, F. Klocke, D. Meyer, et al, Cryogenic manufacturing processes, CIRP Ann. 65 (2016) 713-736.
DOI: 10.1016/j.cirp.2016.06.007
Google Scholar
[4]
A. Naumov, A. Vereschaka, A. Batako, A. Vereschaka, System of High-performance Cutting with Enhanced Combined Effect of Cooling and Lubrication Medium Based on Ranque-hilsch Effect, Procedia CIRP 57 (2016) 457-460.
DOI: 10.1016/j.procir.2016.11.079
Google Scholar
[5]
F. Klocke, G. Eisenblätter, Dry cutting - State of research, VDI Berichte 46 (1998) 159-188.
Google Scholar
[6]
N. Joy, S. Prakash, A. Krishnamoorthy, A. Antony, Experimental investigation and analysis of drilling in Grade 5 Titanium alloy (Ti-6Al-4V), Mater Today Proc. 21 (2020) 335-339.
DOI: 10.1016/j.matpr.2019.05.458
Google Scholar
[7]
R.F. Hamade, F. Ismail, A case for aggressive drilling of aluminum, J. Mater. Process Technol. 166 (2005) 86-97.
Google Scholar
[8]
Y.X. Li, F. Jiao, Z.Q Zhang, Z. Feng Bin, Y. Niu, Research on entrance delamination characteristics and damage suppression strategy in drilling CFRP/Ti6Al4V stacks, J. Manuf. Process 76 (2022) 518-31.
DOI: 10.1016/j.jmapro.2022.02.018
Google Scholar
[9]
E.O. Ezugwu, Key improvements in the machining of difficult-to-cut aerospace superalloys, Int. J. Mach. Tools Manuf. 45 (2005) 1353-1367.
DOI: 10.1016/j.ijmachtools.2005.02.003
Google Scholar
[10]
Y. Wang, M. Dai, K. Liu, J. Liu, L. Han, H. Liu, Research on surface heat transfer mechanism of liquid nitrogen jet cooling in cryogenic machining, Appl. Therm. Eng. 179 (2020) 115607.
DOI: 10.1016/j.applthermaleng.2020.115607
Google Scholar
[11]
P. Ambedkar, T. Dutta, Analysis of various separation characteristics of Ranque-Hilsch vortex tube and its applications – A review, Chem. Eng. Res. Des. 191 (2023) 93–108.
DOI: 10.1016/j.cherd.2023.01.019
Google Scholar
[12]
G.J. Ranque, Experiments on Expansion in a Vortex with Simultaneous Exhaust of Hot and Cold Air, Le J. Phys. le Radium 4 (1933) 112–114.
Google Scholar
[13]
B.K. Ahlborn, J.M. Gordon, The vortex tube as a classic thermodynamic refrigeration cycle, J. Appl. Phys. 88 (2000) 3645–3653.
DOI: 10.1063/1.1289524
Google Scholar
[14]
R. Hilsch, The use of the expansion of gases in a centrifugal field as cooling process, Rev. Sci. Instrum. 18 (1947) 108–13.
Google Scholar
[15]
S. Eiamsa-ard, P. Promvonge, Review of Ranque-Hilsch effects in vortex tubes, Renew Sustain. Energy Rev. 12 (2008) 1822–1842.
DOI: 10.1016/j.rser.2007.03.006
Google Scholar
[16]
C. Li, J. Xu, M. Chen, Q. An, M. El Mansori, F. Ren, Tool wear processes in low frequency vibration assisted drilling of CFRP/Ti6Al4V stacks with forced air-cooling, Wear 426 (2019)1616–1623.
DOI: 10.1016/j.wear.2019.01.005
Google Scholar
[17]
P.K. Shetty, R. Shetty, D. Shetty, N.F. Rehaman, T.K. Jose, Machinability Study on Dry Drilling of Titanium Alloy Ti-6Al-4V using L9 Orthoganal Array, Procedia Mater. Sci. 5 (2014) 2605–2614.
DOI: 10.1016/j.mspro.2014.07.521
Google Scholar
[18]
S. Sharif, E.A. Rahim, Performance of coated- and uncoated-carbide tools when drilling titanium alloy-Ti-6Al4V, J. Mater. Process Technol. 185 (2007) 72–76.
DOI: 10.1016/j.jmatprotec.2006.03.142
Google Scholar
[19]
A. Graves, S. Norgren, P. Crawforth, M. Jackson, Surface roughness response to drilling of Ti-5Al-5Mo-5V-3Cr using Ti-Al-N PVD coated and uncoated WC/Co tools, Procedia CIRP. 87 (2020) 170–175.
DOI: 10.1016/j.procir.2020.02.112
Google Scholar