[1]
Bitterlich B, Bitsch S, Friederich K. SiAlON based ceramic cutting tools. J Eur Ceram Soc 2008; 28: 989–94.
DOI: 10.1016/j.jeurceramsoc.2007.09.003
Google Scholar
[2]
Sørby K, Vagnorius Z. High-Pressure Cooling in Turning of Inconel 625 with Ceramic Cutting Tools. Procedia CIRP 2018;77:74–7.
DOI: 10.1016/j.procir.2018.08.221
Google Scholar
[3]
Renz A, Khader I, Kailer A. Tribochemical wear of cutting-tool ceramics in sliding contact against a nickel-base alloy. J Eur Ceram Soc 2016;36:705–17.
DOI: 10.1016/j.jeurceramsoc.2015.10.032
Google Scholar
[4]
Zhuang K, Zhu D, Zhang X, Ding H. Notch wear prediction model in turning of Inconel 718 with ceramic tools considering the influence of work hardened layer. Wear 2014;313:63–74.
DOI: 10.1016/j.wear.2014.02.007
Google Scholar
[5]
Fernández-Lucio P, Pereira Neto O, Gómez-Escudero G, Amigo Fuertes FJ, Fernández Valdivielso A, López de Lacalle Marcaide LN. Roughing Milling with Ceramic Tools in Comparison with Sintered Carbide on Nickel-Based Alloys. Coatings 2021;11:734.
DOI: 10.3390/coatings11060734
Google Scholar
[6]
Dudzinski D, Devillez A, Moufki A, Larrouquère D, Zerrouki V, Vigneau J. A review of developments towards dry and high speed machining of Inconel 718 alloy. Int J Mach Tools Manuf 2004;44:439–56.
DOI: 10.1016/S0890-6955(03)00159-7
Google Scholar
[7]
Richards N, Aspinwall D. Use of ceramic tools for machining nickel based alloys. Int J Mach Tools Manuf 1989;29:575–88.
DOI: 10.1016/0890-6955(89)90072-2
Google Scholar
[8]
Xing Y, Deng J, Zhao J, Zhang G, Zhang K. Cutting performance and wear mechanism of nanoscale and microscale textured Al2O3/TiC ceramic tools in dry cutting of hardened steel. Int J Refract Metals Hard Mater 2014;43:46–58.
DOI: 10.1016/J.IJRMHM.2013.10.019
Google Scholar
[9]
Cui X, Guo Z, Guo J. Intermittent turning performance of ceramic tools with surface micro-geometry designed considering fluid-like behavior of chip. Ceram Int 2018;44:16890–9.
DOI: 10.1016/j.ceramint.2018.06.127
Google Scholar
[10]
Mishra SK, Ghosh S, Aravindan S. Performance of laser processed carbide tools for machining of Ti6Al4V alloys: A combined study on experimental and finite element analysis. Precis Eng 2019;56:370–85.
DOI: 10.1016/J.PRECISIONENG.2019.01.006
Google Scholar
[11]
Rajbongshi SK, Annebushan Singh M, Kumar Sarma D. A comparative study in machining of AISI D2 steel using textured and non-textured coated carbide tool at the flank face. J Manuf Process 2018;36:360–72.
DOI: 10.1016/j.jmapro.2018.10.041
Google Scholar
[12]
Standard I. ISO - ISO 4288:1996/Cor 1:1998 - Geometrical Product Specifications (GPS) — Surface texture: Profile method — Rules and procedures for the assessment of surface texture — Technical Corrigendum 1 n.d. https://www.iso.org/standard/29875.html (accessed June 15, 2021).
DOI: 10.3403/02337030
Google Scholar
[13]
Zhang K, Deng J, Ding Z, Guo X, Sun L. Improving dry machining performance of TiAlN hard-coated tools through combined technology of femtosecond laser-textures and WS2 soft-coatings. J Manuf Process 2017; 30: 492–501. https://doi.org/.
DOI: 10.1016/J.JMAPRO.2017.10.018
Google Scholar