[1]
J. Kaspar, S. Bechtel, T. Häfele, F. Herter, J. Schneberger, D. Bähre, J. Griebsc, H-G. Herrmann, M. Vielhaber. Integrated Additive Product Development for Multi-Material Parts, Procedia Manufacturing 2019, 33 pp.3-10
DOI: 10.1016/j.promfg.2019.04.002
Google Scholar
[2]
S. Bhatt, D. Joshi, P.K. Rakesh, A.K. Godiyal. Advances in additive manufacturing processes and their use for the fabrication of lower limb prosthetic devices, Expert Review of Medical Devices, 2023, 20:1, pp.17-27
DOI: 10.1080/17434440.2023.2169130
Google Scholar
[3]
M. Alshawabkeh, L.-M. Faller. 10 - Functionalized 4D-printed sensor systems, in Smart Materials in Additive Manufacturing, Volume 1: 4D Printing Principles and Fabrication, Additive Manufacturing Materials and Technologies, 2022, pp.335-371
DOI: 10.1016/B978-0-12-824082-3.00003-9
Google Scholar
[4]
D. Delgado Camacho, P. Clayton, W. O'Brien, R. Ferron, M. Juenger, S. Salamone, C. Seepersad. Applications of additive manufacturing in the construction industry - A forward-looking review. Automat Constr. 2018, 89, pp.110-119
DOI: 10.22260/ISARC2017/0033
Google Scholar
[5]
S. Gorgutsa, K. Bachus, S. Larochelle, Washable hydrophobic smart textiles and multi-material fibers for wireless communication. Smart Mater. Struct. 2016, 25, 115027
DOI: 10.1088/0964-1726/25/11/115027
Google Scholar
[6]
J. Minguella-Canela, P.R. Challa, M.A. De Los Santos, J. Lobo, P. Morey, J.M. Font. Re-design of a component of a lower-limb robotic exoskeleton for integrating sensing capacity and enhancing multi-material direct additive manufacturing, 2021, IOP Conf. Ser.: Mater. Sci. Eng. 119, 012097
DOI: 10.1088/1757-899X/1193/1/012097
Google Scholar
[7]
J. Gong, O. Seow, C. Honnet, J. Forman, S. Mueller. 2021. MetaSense: Integrating Sensing Capabilities into Mechanical Metamaterial. In The 34th Annual ACM Symposium on User Interface Software and Technology (UIST '21), 2021, Virtual Event, USA. ACM, NYC, NY, USA
DOI: 10.1145/3472749.3474806
Google Scholar
[8]
P. Laszczak, L. Jiang, D.L. Bader, D. Moser, S. Zahedi. Development and validation of a 3D-printed interfacial stress sensor for prosthetic applications. Medical Engineering & Physics, 2015, 37(1), pp.132-137
DOI: 10.1016/j.medengphy.2014.10.002
Google Scholar
[9]
L. Paternò, V. Dhokia, A. Menciassi, J. Bilzon, E. Seminati. A personalised prosthetic liner with embedded sensor technology: a case study. BioMed Eng OnLine (2020) 19:71
DOI: 10.1186/s12938-020-00814-y
Google Scholar
[10]
C. Fekiri, H. Chan Kim, I. Hwan Lee. 3D-Printable Carbon Nanotubes-Based Composite for Flexible Piezoresistive Sensors. Materials, 2020, 13(23): 5482
DOI: 10.3390/ma13235482
Google Scholar
[11]
M. Schouten, C. Spaan, D. Kosmas, R. Sanders, G. Krijnen. 3D printed capacitive shear and normal force sensor using a highly flexible dielectric. in: 2021 IEEE Sensors Applications Symposium (SAS)
DOI: 10.1109/SAS51076.2021.9530032
Google Scholar
[12]
A.C. Tasolamprou, D. Mentzaki, Z. Viskadourakis, E.N. Economou, M. Kafesaki, G. Kenanakis. Flexible 3D Printed conductive Metamaterial Units for electromagnetic Applications in Microwaves. Materials, 2020, 13(17):3879
DOI: 10.3390/ma13173879
Google Scholar
[13]
Y. Shao, Q. Zhang, Y. Zhao, X. Pang, M. Liu, D. Zhang, X. Liang. Flexible Pressure Sensor with Micro-Structure Arrays Based on PDMS and PEDOT:PSS/PUD&CNTs Composite Film with 3D Printing. Materials, 2021, 14(21), 6499
DOI: 10.3390/ma14216499
Google Scholar
[14]
T. Košir, J. Slavic. Modeling of Single-Process 3D-Printed Piezoelectric Sensors with Resistive Electrodes: The Low-Pass Filtering Effect. Polymers, 2023, 15, 158
DOI: 10.3390/polym15010158
Google Scholar
[15]
M.R. Khosravani, T. Reinicke. 3D-printed sensors: Current progress and future challenges. Sensors and Actuators A, 2020, 305:111916
DOI: 10.1016/j.sna.2020.111916
Google Scholar
[16]
A. Muguruza, J. Bonada Bo, A. Gómez, J. Minguella-Canela, J. Fernandes, F. Ramos, E. Xuriguera, A. Varea, A. Cirera. Development of a multi-material additive manufacturing process for electronic devices. Procedia Manuf. 13, 746–753 (2017)
DOI: 10.1016/j.promfg.2017.09.180
Google Scholar
[17]
A. Castellví, L. Poudelet, A. Tejo, L Calvo, R Uceda, P Lustig, J Minguella, I. Buj, F. Fenollosa, L. Krauel. The commissioning of a hybrid multi-material 3D printer. IOP Conf. Ser.: Mater. Sci. Eng. 1193 (1), 012044
DOI: 10.1088/1757-899X/1193/1/012044
Google Scholar
[18]
A. Zolfagharian, A. Kaynak, M. Bodaghi, A.Z. Kouzani, S. Gharaie, S. Nahavandi. Control-Based 4D Printing: Adaptive 4D-Printed Systems, Appl. Sci. 2020, 10, 3020;
DOI: 10.3390/app10093020
Google Scholar
[19]
W.M.H. Verbeeten, M. Lorenzo-Bañuelos and P.J. Arribas-Subiñas. Anisotropic rate-dependent mechanical behavior of Poly(Lactic Acid) processed by Material Extrusion, Additive Manufacturing, Volume 31, January 2020, 100968
DOI: 10.1016/j.addma.2019.100968
Google Scholar
[20]
F. Rivera-López, M. Hernández-Molina, A. del Medico Bravo, Mª.M. Laz Pavón. Effect of Process Parameters and Postprocessing on Mechanical Properties of Additive Manufacturing Polylactic Acid Obtained by Fused Deposition Modeling. 3D Printing and Additive Manufacturing, 2023, pp.60-69
DOI: 10.1089/3dp.2021.0052
Google Scholar
[21]
A.L. Silva, M. Varanis, A.G. Mereles, C. Oliveira, J.M. Balthazar. A study of strain and deformation measurement using the Arduino microcontroller and strain gauges devices. Revista Brasileira de Ensino de Física, vol. 41, nº 3, e20180206, 2019
DOI: 10.1590/1806-9126-RBEF-2018-0206
Google Scholar
[22]
S.F. Awad, F. Kadhim, W. Aboud, M.S.A.-D. Tahir. Strain and deformation measurement for prosthetic parts using the Arduino microcontroller and strain gauges instruments. International Journal of Mechanical EngineeringVolume 7, Issue 1, 2022, pp.1049-1055.
Google Scholar
[23]
Asociación Española de Normalización. Norma UNE 116005:2012. Fabricación por adición de capas en materiales plásticos. Fabricación aditiva. Preparación de probetas. Edition date: 2014-04-18. Available online on: 03/03/2023. https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=N0049159
DOI: 10.3989/ic.1980.v32.i319.2356
Google Scholar
[24]
I nternational Standards Organisation, ISO. Standard ISO 178:2019 Plastics — Determination of flexural properties. Technical Committee : ISO/TC 61/SC 2 Mechanical behavior. Publication date: 2019-04. Available online on: 03/03/2023. https://www.iso.org/standard/45091.html
DOI: 10.2172/1575113
Google Scholar
[25]
International Standards Organisation, ISO. Standard ISO 527-1:2019 Plastics — Determination of tensile properties — Part 1: General principles. Technical Committee : ISO/TC 61/SC 2 Mechanical behavior. Publication date: 2019-07. Available online on: 03/03/2023. https://www.iso.org/standard/75824.html
DOI: 10.2172/1575113
Google Scholar
[26]
International Standards Organisation, ISO. Standard ISO 527-2:2012 Plastics — Determination of tensile properties — Part 2: Test conditions for moulding and extrusion plastics. Technical Committee : ISO/TC 61/SC 2 Mechanical behavior. Edition 2. Publication date: 2012-02. Available online on: 03/03/2023. https://www.iso.org/standard/56046.html
DOI: 10.3403/30315535u
Google Scholar
[27]
BCN 3D Technologies. Sigma R19 Especificaciones. Available online on: 22/02/2023. https://www.bcn3d.com/wp-content/uploads/2019/10/Datasheet-Sigma-R19-EN.pdf
Google Scholar
[28]
S. Ureta Posadas. Motores paso a paso en impresión 3D (II): Criterios de selección en motores y drivers. Dima 3d printers. Available online on: 22/02/2023. http://www.dima3d.com/motores-paso-a-paso-en-impresion-3d-ii-criterios-de-seleccion-de-motores-y-drivers/
DOI: 10.15178/va.2000.16.13-29
Google Scholar
[29]
Motion King. HB Stepper Motor & Gear Motor. Motion King. Available online on 22/02/2023: http://www.motionking.com/show_products_detail.asp?ID=8&fenlei_ID=2
Google Scholar
[30]
DFRobot. TBB6600 Stepper Motor Driver User Guide [Arxiu pdf]. DFRobot. Available online on 22/02/2023: https://www.makerguides.com/wp-content/uploads/2019/10/TB6600-Manual.pdf
Google Scholar
[31]
Microchip. MCP41XXX/42XXX datasheet [pdf file]. Available online on 22/02/2023: https://eu.mouser.com/datasheet/2/268/11195c-64695.pdf
Google Scholar
[32]
ST Microelectronics. ST555 datasheet file. Available online on 22/02/2023: https://www.st.com/resource/en/datasheet/cd00000479.pdf
Google Scholar
[33]
Protopasta. Conductive PLA, datasheet file. Available online on 22/02/2023: https://www.proto-pasta.com/pages/conductive-pla#CCtemp
Google Scholar
[34]
Recreus. Conductive Filaflex: Technical Dataseheet. Available online on 22/02/2023: https://www.filamentworld.de/fact-sheets/Recreus_Filaflex-Conductive_92A_Datenblatt_EN.pdf
Google Scholar
[35]
Recreus. Filaflex 82A Original: technical datasheet. Available online on 22/02/2023: https://www.impresoras3d.com/wp-content/uploads/2021/05/TDS-FILAFLEX-82A-ORIGINAL-_-TECHNICAL-DATA-SHEET.pdf
Google Scholar