Development of a Test Bench for the Experimentation of the Electrical Performance of 3D Printed Multi-Material Parts

Article Preview

Abstract:

Obtaining multi-material parts by material extrusion processes is becoming more interesting as the available materials permit achieving superior properties in the 3D printed products. Combining conductive filament with other with elastomeric properties makes it possible to materialise electrical circuits for introducing active elements in specific parts, such as sensors, triggers or antennas. In this context, a test bench has been designed, manufactured and set-up, to evaluate the electrical behaviour of multi-material 3D printed test samples composed of two or more materials, being one a conductor of electricity (at least) and the other(s) non-conductive but flexible. The functionalities of the test bench include the possibility to apply tensile, compressive, shear, or flexural loads to the test samples. The electrical performance of the samples can be assessed in terms of resistivity and capacitance, in real time, when the test bench stands still and when it conducts the series of movements that produce the elastic deformation of the samples. To achieve this, three electronic circuits have been designed with their own corresponding control with Arduino: a circuit to measure the variation of the resistance of the test samples, a circuit to measure the variation of the capacitance of the test samples, and a circuit controlling the movements of the mechanical set (motor and terminals) that generates the deformation of the test samples. The test bench is connected to a desktop computer to ease the data export, treatment, and visualisation. As a set-up of the test bench, several preliminary experimentation measurements have been done to assess factors of interest such as sensitivity and a correlation index. The present work also frames the requirements of the parts to be tested in the bench and outlines the work procedure to carry out the series of experiments.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

13-23

Citation:

Online since:

October 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Kaspar, S. Bechtel, T. Häfele, F. Herter, J. Schneberger, D. Bähre, J. Griebsc, H-G. Herrmann, M. Vielhaber. Integrated Additive Product Development for Multi-Material Parts, Procedia Manufacturing 2019, 33 pp.3-10

DOI: 10.1016/j.promfg.2019.04.002

Google Scholar

[2] S. Bhatt, D. Joshi, P.K. Rakesh, A.K. Godiyal. Advances in additive manufacturing processes and their use for the fabrication of lower limb prosthetic devices, Expert Review of Medical Devices, 2023, 20:1, pp.17-27

DOI: 10.1080/17434440.2023.2169130

Google Scholar

[3] M. Alshawabkeh, L.-M. Faller. 10 - Functionalized 4D-printed sensor systems, in Smart Materials in Additive Manufacturing, Volume 1: 4D Printing Principles and Fabrication, Additive Manufacturing Materials and Technologies, 2022, pp.335-371

DOI: 10.1016/B978-0-12-824082-3.00003-9

Google Scholar

[4] D. Delgado Camacho, P. Clayton, W. O'Brien, R. Ferron, M. Juenger, S. Salamone, C. Seepersad. Applications of additive manufacturing in the construction industry - A forward-looking review. Automat Constr. 2018, 89, pp.110-119

DOI: 10.22260/ISARC2017/0033

Google Scholar

[5] S. Gorgutsa, K. Bachus, S. Larochelle, Washable hydrophobic smart textiles and multi-material fibers for wireless communication. Smart Mater. Struct. 2016, 25, 115027

DOI: 10.1088/0964-1726/25/11/115027

Google Scholar

[6] J. Minguella-Canela, P.R. Challa, M.A. De Los Santos, J. Lobo, P. Morey, J.M. Font. Re-design of a component of a lower-limb robotic exoskeleton for integrating sensing capacity and enhancing multi-material direct additive manufacturing, 2021, IOP Conf. Ser.: Mater. Sci. Eng. 119, 012097

DOI: 10.1088/1757-899X/1193/1/012097

Google Scholar

[7] J. Gong, O. Seow, C. Honnet, J. Forman, S. Mueller. 2021. MetaSense: Integrating Sensing Capabilities into Mechanical Metamaterial. In The 34th Annual ACM Symposium on User Interface Software and Technology (UIST '21), 2021, Virtual Event, USA. ACM, NYC, NY, USA

DOI: 10.1145/3472749.3474806

Google Scholar

[8] P. Laszczak, L. Jiang, D.L. Bader, D. Moser, S. Zahedi. Development and validation of a 3D-printed interfacial stress sensor for prosthetic applications. Medical Engineering & Physics, 2015, 37(1), pp.132-137

DOI: 10.1016/j.medengphy.2014.10.002

Google Scholar

[9] L. Paternò, V. Dhokia, A. Menciassi, J. Bilzon, E. Seminati. A personalised prosthetic liner with embedded sensor technology: a case study. BioMed Eng OnLine (2020) 19:71

DOI: 10.1186/s12938-020-00814-y

Google Scholar

[10] C. Fekiri, H. Chan Kim, I. Hwan Lee. 3D-Printable Carbon Nanotubes-Based Composite for Flexible Piezoresistive Sensors. Materials, 2020, 13(23): 5482

DOI: 10.3390/ma13235482

Google Scholar

[11] M. Schouten, C. Spaan, D. Kosmas, R. Sanders, G. Krijnen. 3D printed capacitive shear and normal force sensor using a highly flexible dielectric. in: 2021 IEEE Sensors Applications Symposium (SAS)

DOI: 10.1109/SAS51076.2021.9530032

Google Scholar

[12] A.C. Tasolamprou, D. Mentzaki, Z. Viskadourakis, E.N. Economou, M. Kafesaki, G. Kenanakis. Flexible 3D Printed conductive Metamaterial Units for electromagnetic Applications in Microwaves. Materials, 2020, 13(17):3879

DOI: 10.3390/ma13173879

Google Scholar

[13] Y. Shao, Q. Zhang, Y. Zhao, X. Pang, M. Liu, D. Zhang, X. Liang. Flexible Pressure Sensor with Micro-Structure Arrays Based on PDMS and PEDOT:PSS/PUD&CNTs Composite Film with 3D Printing. Materials, 2021, 14(21), 6499

DOI: 10.3390/ma14216499

Google Scholar

[14] T. Košir, J. Slavic. Modeling of Single-Process 3D-Printed Piezoelectric Sensors with Resistive Electrodes: The Low-Pass Filtering Effect. Polymers, 2023, 15, 158

DOI: 10.3390/polym15010158

Google Scholar

[15] M.R. Khosravani, T. Reinicke. 3D-printed sensors: Current progress and future challenges. Sensors and Actuators A, 2020, 305:111916

DOI: 10.1016/j.sna.2020.111916

Google Scholar

[16] A. Muguruza, J. Bonada Bo, A. Gómez, J. Minguella-Canela, J. Fernandes, F. Ramos, E. Xuriguera, A. Varea, A. Cirera. Development of a multi-material additive manufacturing process for electronic devices. Procedia Manuf. 13, 746–753 (2017)

DOI: 10.1016/j.promfg.2017.09.180

Google Scholar

[17] A. Castellví, L. Poudelet, A. Tejo, L Calvo, R Uceda, P Lustig, J Minguella, I. Buj, F. Fenollosa, L. Krauel. The commissioning of a hybrid multi-material 3D printer. IOP Conf. Ser.: Mater. Sci. Eng. 1193 (1), 012044

DOI: 10.1088/1757-899X/1193/1/012044

Google Scholar

[18] A. Zolfagharian, A. Kaynak, M. Bodaghi, A.Z. Kouzani, S. Gharaie, S. Nahavandi. Control-Based 4D Printing: Adaptive 4D-Printed Systems, Appl. Sci. 2020, 10, 3020;

DOI: 10.3390/app10093020

Google Scholar

[19] W.M.H. Verbeeten, M. Lorenzo-Bañuelos and P.J. Arribas-Subiñas. Anisotropic rate-dependent mechanical behavior of Poly(Lactic Acid) processed by Material Extrusion, Additive Manufacturing, Volume 31, January 2020, 100968

DOI: 10.1016/j.addma.2019.100968

Google Scholar

[20] F. Rivera-López, M. Hernández-Molina, A. del Medico Bravo, Mª.M. Laz Pavón. Effect of Process Parameters and Postprocessing on Mechanical Properties of Additive Manufacturing Polylactic Acid Obtained by Fused Deposition Modeling. 3D Printing and Additive Manufacturing, 2023, pp.60-69

DOI: 10.1089/3dp.2021.0052

Google Scholar

[21] A.L. Silva, M. Varanis, A.G. Mereles, C. Oliveira, J.M. Balthazar. A study of strain and deformation measurement using the Arduino microcontroller and strain gauges devices. Revista Brasileira de Ensino de Física, vol. 41, nº 3, e20180206, 2019

DOI: 10.1590/1806-9126-RBEF-2018-0206

Google Scholar

[22] S.F. Awad, F. Kadhim, W. Aboud, M.S.A.-D. Tahir. Strain and deformation measurement for prosthetic parts using the Arduino microcontroller and strain gauges instruments. International Journal of Mechanical EngineeringVolume 7, Issue 1, 2022, pp.1049-1055.

Google Scholar

[23] Asociación Española de Normalización. Norma UNE 116005:2012. Fabricación por adición de capas en materiales plásticos. Fabricación aditiva. Preparación de probetas. Edition date: 2014-04-18. Available online on: 03/03/2023. https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=N0049159

DOI: 10.3989/ic.1980.v32.i319.2356

Google Scholar

[24] I nternational Standards Organisation, ISO. Standard ISO 178:2019 Plastics — Determination of flexural properties. Technical Committee : ISO/TC 61/SC 2 Mechanical behavior. Publication date: 2019-04. Available online on: 03/03/2023. https://www.iso.org/standard/45091.html

DOI: 10.2172/1575113

Google Scholar

[25] International Standards Organisation, ISO. Standard ISO 527-1:2019 Plastics — Determination of tensile properties — Part 1: General principles. Technical Committee : ISO/TC 61/SC 2 Mechanical behavior. Publication date: 2019-07. Available online on: 03/03/2023. https://www.iso.org/standard/75824.html

DOI: 10.2172/1575113

Google Scholar

[26] International Standards Organisation, ISO. Standard ISO 527-2:2012 Plastics — Determination of tensile properties — Part 2: Test conditions for moulding and extrusion plastics. Technical Committee : ISO/TC 61/SC 2 Mechanical behavior. Edition 2. Publication date: 2012-02. Available online on: 03/03/2023. https://www.iso.org/standard/56046.html

DOI: 10.3403/30315535u

Google Scholar

[27] BCN 3D Technologies. Sigma R19 Especificaciones. Available online on: 22/02/2023. https://www.bcn3d.com/wp-content/uploads/2019/10/Datasheet-Sigma-R19-EN.pdf

Google Scholar

[28] S. Ureta Posadas. Motores paso a paso en impresión 3D (II): Criterios de selección en motores y drivers. Dima 3d printers. Available online on: 22/02/2023. http://www.dima3d.com/motores-paso-a-paso-en-impresion-3d-ii-criterios-de-seleccion-de-motores-y-drivers/

DOI: 10.15178/va.2000.16.13-29

Google Scholar

[29] Motion King. HB Stepper Motor & Gear Motor. Motion King. Available online on 22/02/2023: http://www.motionking.com/show_products_detail.asp?ID=8&fenlei_ID=2

Google Scholar

[30] DFRobot. TBB6600 Stepper Motor Driver User Guide [Arxiu pdf]. DFRobot. Available online on 22/02/2023: https://www.makerguides.com/wp-content/uploads/2019/10/TB6600-Manual.pdf

Google Scholar

[31] Microchip. MCP41XXX/42XXX datasheet [pdf file]. Available online on 22/02/2023: https://eu.mouser.com/datasheet/2/268/11195c-64695.pdf

Google Scholar

[32] ST Microelectronics. ST555 datasheet file. Available online on 22/02/2023: https://www.st.com/resource/en/datasheet/cd00000479.pdf

Google Scholar

[33] Protopasta. Conductive PLA, datasheet file. Available online on 22/02/2023: https://www.proto-pasta.com/pages/conductive-pla#CCtemp

Google Scholar

[34] Recreus. Conductive Filaflex: Technical Dataseheet. Available online on 22/02/2023: https://www.filamentworld.de/fact-sheets/Recreus_Filaflex-Conductive_92A_Datenblatt_EN.pdf

Google Scholar

[35] Recreus. Filaflex 82A Original: technical datasheet. Available online on 22/02/2023: https://www.impresoras3d.com/wp-content/uploads/2021/05/TDS-FILAFLEX-82A-ORIGINAL-_-TECHNICAL-DATA-SHEET.pdf

Google Scholar