[1]
R. Lewis, U. Olofsson, Wheel-rail interface handbook, Elsevier, 2009.
Google Scholar
[2]
L.P. Nishikawa, H. Goldenstein, Divorced Eutectoid on Heat-Affected Zone of Welded Pearlitic Rails, J. Miner. Met. Mater. Soc. (2018).
DOI: 10.1007/s11837-018-3213-5
Google Scholar
[3]
L.F. Bauri, L.H.D. Alves, H.B. Pereira, A.P. Tschiptschin, H. Goldenstein, The role of welding parameters on the control of the microstructure and mechanical properties of rails welded using FBW, J. Mater. Res. Technol. 9 (2020) 8058–8073. https://doi.org/10.1016/j.jmrt. 2020.05.030.
DOI: 10.1016/j.jmrt.2020.05.030
Google Scholar
[4]
L.H.D. Alves, M.L. Lagares, R.M.M. Filho, T. Tepedino, H. Goldenstein, Predictive Mathematical Modeling of the Flash-Butt Welding Process to Optimize the Properties of Welds of Premium and Super Premium Rails, Int. Heavy Haul Assoc. (2019).
Google Scholar
[5]
R.R. Porcaro, D.A.P. de Lima, G.L. de Faria, L.B. Godefroid, L.C. Cândido, Microestrutura e propriedades mecânicas de um aço para trilhos ferroviários soldado por centelhamento, Soldag. Inspeção. 22 (2017) 59–71.
DOI: 10.1590/0104-9224/si2201.07
Google Scholar
[6]
P. Mutton, J. Cookson, C. Qiu, D. Welsby, Microstructural characterisation of rolling contact fatigue damage in flashbutt welds, Wear. 366–367 (2016) 368–377.
DOI: 10.1016/j.wear.2016.03.020
Google Scholar
[7]
H. Farhangi, S.M. Mousavizadeh, Horizontal split-web fractures of flash butt welded rails, Proc. 8th Int. Fract. Conf. (2007) 509–517.
Google Scholar
[8]
L.B. Godefroid, G.L. Faria, L.C. Cândido, T.G. Viana, Fatigue Failure of a Flash Butt Welded Rail, Procedia Mater. Sci. 3 (2014) 1896–1901.
DOI: 10.1016/j.mspro.2014.06.306
Google Scholar
[9]
H.L. Ito, J.D.C. Gomes, Análise de falhas - um dever do IPT, Rev. IPT Tecnol. e Inovação. 3 (2019) 35–64.
DOI: 10.34033/2526-5830-v3n11-95
Google Scholar
[10]
S.P. Haibatollahi, P.H. Tehrani, Prediction of residual stress distribution in flash butt welded rails using electro-thermo-mechanical simulation, Int. J. Veh. Struct. Syst. 5 (2013) 53–57.
DOI: 10.4273/ijvss.5.2.02
Google Scholar
[11]
H. Mansouri, A. Monshi, Microstructure and residual stress variations in weld zone of flash-butt welded railroads, Sci. Technol. Weld. Join. 9 (2004) 237–245.
DOI: 10.1179/136217104225012201
Google Scholar
[12]
Z. Cal, M. Nawafune, N. Ma, Y. Qu, B. Cao, H. Murakawa, Residual Stresses in Flash Butt Welded Rail, Trans. JWRI. 40 (2011) 79–87.
Google Scholar
[13]
H.B. Pereira, E. Anderson, A. Echeverri, L. Henrique, D. Alves, H. Goldenstein, Evaluation of the Effect of Heat Input and Cooling Rate of Rail Flash-Butt Welding using Finite Element Method Simulation, Soldag. Inspeção. 27 (2022) 1–18. https://doi.org/https://doi.org/.
DOI: 10.1590/0104-9224/SI27.01
Google Scholar
[14]
K. Saita, M. Ueda, T. Miyazaki, Developing technologies to improve the reliability of flash-butt welds, 11th Int. Heavy Haul Assoc. Conf. (2017) 208–215.
Google Scholar
[15]
N. Ma, Z. Cai, H. Huang, D. Deng, H. Murakawa, J. Pan, Investigation of welding residual stress in flash-butt joint of U71Mn rail steel by numerical simulation and experiment, Mater. Des. 88 (2015) 1296–1309.
DOI: 10.1016/j.matdes.2015.08.124
Google Scholar
[16]
R.R. Porcaro, G.L. Faria, L.B. Godefroid, G.R. Apolonio, L.C. Cândido, E.S. Pinto, Microstructure and mechanical properties of a flash butt welded pearlitic rail, J. Mater. Process. Technol. 270 (2019) 20–27.
DOI: 10.1016/j.jmatprotec.2019.02.013
Google Scholar
[17]
AREMA, Manual for railway engineering, American Railway Engineering and Maintenance-of-Way Association, 2010.
Google Scholar
[18]
International Heavy Haul Association (IHHA), Guidelines to Best Practices for Heavy Haul Railway Operation: Wheel and Rail Interface Issues, First Edit, Virginia Beach, 2001.
Google Scholar
[19]
H.B. Pereira, E.A.A. Echeverri, L.H.D. Alves, H. Goldenstein, Influência das Propriedades Mecânicas e Físicas Dependentes da Temperatura nas Tensões Residuais por Simulação de Soldagem de Trilhos por Flash-Butt, V Simpósio Eng. Ferrov. (2022).
DOI: 10.17648/sef-2022-146919
Google Scholar
[20]
L. Weingrill, J. Krutzler, N. Enzinger, Temperature Field Evolution during Flash Butt Welding of Railway Rails, Mater. Sci. Forum. 879 (2016) 2088–2093. https://doi.org/10.4028/ www.scientific.net/msf.879.2088.
DOI: 10.4028/www.scientific.net/msf.879.2088
Google Scholar
[21]
L. Weingrill, M.B. Nasiri, N. Enzinger, Thermo-metallurgically coupled numerical simulation and validation of multi-layer gas metal arc welding of high strength pearlitic rails, Weld. World. 63 (2019) 63–73.
DOI: 10.1007/s40194-018-0639-x
Google Scholar
[22]
E.A. Ariza, M.A. Martorano, N.B. De Lima, A.P. Tschiptschin, Numerical simulation with thorough experimental validation to predict the build-up of residual stresses during quenching of carbon and low-alloy steels, ISIJ Int. 54 (2014) 1396–1405.
DOI: 10.2355/isijinternational.54.1396
Google Scholar
[23]
H.K.D.H. Bhadeshia, Material Factors, in: Handb. Residual Stress Deform. Steel, ASM International, Materials Park, 2022.
Google Scholar
[24]
R. Schröder, Influences on development of thermal and residual stresses in quenched steel cylinders of different dimensions, Mater. Sci. Technol. 1 (1985) 754–764.
DOI: 10.1179/mst.1985.1.10.754
Google Scholar
[25]
R. Pietzsch, M. Brzoza, Y. Kaymak, E. Specht, A. Bertram, Simulation of the distortion of long steel profiles during cooling, J. Appl. Mech. 74 (2007) 427–437.
DOI: 10.1115/1.2338050
Google Scholar
[26]
A.L.S. Cezário, G.L. de Faria, Proposition of an empirical functional equation to predict the kinetics of austenite to ferrite transformation in a continuous cooled IF-Ti-stabilized steel, Mater. Res. 24 (2021) 1–10.
DOI: 10.1590/1980-5373-MR-2020-0498
Google Scholar
[27]
K.F. Rodrigues, G.L. De Faria, Characterization and prediction of continuous cooling transformations in rail steels, Mater. Res. 24 (2021).
DOI: 10.1590/1980-5373-MR-2020-0519
Google Scholar
[28]
M. Avrami, Kinetics of Phase Change. II - Transformation-Time Relations for Random Distribution of Nuclei, J. Chem. Phys. 8 (1940) 212–224.
DOI: 10.1063/1.1750631
Google Scholar
[29]
W.A. Johnson, R.F. Mehl, Reaction Kinetics in Processes of Nucleation and Growth, Metall. Mater. Trans. (1939).
Google Scholar
[30]
A.L.V.D. Costa e Silva, P.R. Mei, Aços e Ligas Especiais, 3rd ed., Blucher, 2010.
Google Scholar
[31]
H.S. Yang, H.K.D.H. Bhadeshia, Austenite grain size and the martensite-start temperature, Scr. Mater. 60 (2009) 493–495.
DOI: 10.1016/j.scriptamat.2008.11.043
Google Scholar
[32]
M. Nikravesh, M. Naderi, G.H. Akbari, Influence of hot plastic deformation and cooling rate on martensite and bainite start temperatures in 22MnB5 steel, Mater. Sci. Eng. A. 540 (2012) 24–29.
DOI: 10.1016/j.msea.2012.01.018
Google Scholar
[33]
A. Stormvinter, A. Borgenstam, J. Ågren, Thermodynamically based prediction of the martensite start temperature for commercial steels, Metall. Mater. Trans. A. 43A (2012) 3870–3879.
DOI: 10.1007/s11661-012-1171-z
Google Scholar
[34]
H. Colpaert, Metalografia dos produtos siderúrgicos comuns, Edgard Blucher, 1959.
Google Scholar
[35]
H.K.D.H. Bhadeshia, Thermodynamic analysis of isothermal transformation diagrams, Met. Sci. 16 (1982) 159–165.
DOI: 10.1179/030634582790427217
Google Scholar