Premium Rail Flash-Butt Welding Process Window Based on Phase Transformations

Article Preview

Abstract:

Currently, heavy-haul and passenger rails are joined by a welding process, which can be either flash-butt welding or thermite. The joining process has increased the overall rails strength, but the welding parameters optimization is tricky and must be performed and studied to improve the weld quality. Heavy-haul rails are high carbon steels, containing alloying elements and as such, the weld presents a series of difficulties. On one side, martensite should be avoided during the cooling step, while on the other, the HAZ should be minimized as it is known to be prone to localized wear and rolling contact fatigue. Finite element simulations were performed to map the weld cooling rates and corresponding heat-affected zone (HAZ) width. CCT curves of rail steels were determined using dilatometry for different austenitizing temperatures. Comparing the simulations with the CCT data, processing windows able to prevent martensite formation were determined, usually corresponding to a critical cooling rate of 2 °C/s. The correlation with the simulations showed that the shorter the HAZ length, the greater the chance of martensite formation due to the higher cooling rate. The methodology developed and presented in this paper can be used for simulations considering phase transformations or determining the microstructure formed from different thermal welding cycles, depending on the distance from the heat source during the welding process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

63-69

Citation:

Online since:

November 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Lewis, U. Olofsson, Wheel-rail interface handbook, Elsevier, 2009.

Google Scholar

[2] L.P. Nishikawa, H. Goldenstein, Divorced Eutectoid on Heat-Affected Zone of Welded Pearlitic Rails, J. Miner. Met. Mater. Soc. (2018).

DOI: 10.1007/s11837-018-3213-5

Google Scholar

[3] L.F. Bauri, L.H.D. Alves, H.B. Pereira, A.P. Tschiptschin, H. Goldenstein, The role of welding parameters on the control of the microstructure and mechanical properties of rails welded using FBW, J. Mater. Res. Technol. 9 (2020) 8058–8073. https://doi.org/10.1016/j.jmrt. 2020.05.030.

DOI: 10.1016/j.jmrt.2020.05.030

Google Scholar

[4] L.H.D. Alves, M.L. Lagares, R.M.M. Filho, T. Tepedino, H. Goldenstein, Predictive Mathematical Modeling of the Flash-Butt Welding Process to Optimize the Properties of Welds of Premium and Super Premium Rails, Int. Heavy Haul Assoc. (2019).

Google Scholar

[5] R.R. Porcaro, D.A.P. de Lima, G.L. de Faria, L.B. Godefroid, L.C. Cândido, Microestrutura e propriedades mecânicas de um aço para trilhos ferroviários soldado por centelhamento, Soldag. Inspeção. 22 (2017) 59–71.

DOI: 10.1590/0104-9224/si2201.07

Google Scholar

[6] P. Mutton, J. Cookson, C. Qiu, D. Welsby, Microstructural characterisation of rolling contact fatigue damage in flashbutt welds, Wear. 366–367 (2016) 368–377.

DOI: 10.1016/j.wear.2016.03.020

Google Scholar

[7] H. Farhangi, S.M. Mousavizadeh, Horizontal split-web fractures of flash butt welded rails, Proc. 8th Int. Fract. Conf. (2007) 509–517.

Google Scholar

[8] L.B. Godefroid, G.L. Faria, L.C. Cândido, T.G. Viana, Fatigue Failure of a Flash Butt Welded Rail, Procedia Mater. Sci. 3 (2014) 1896–1901.

DOI: 10.1016/j.mspro.2014.06.306

Google Scholar

[9] H.L. Ito, J.D.C. Gomes, Análise de falhas - um dever do IPT, Rev. IPT Tecnol. e Inovação. 3 (2019) 35–64.

DOI: 10.34033/2526-5830-v3n11-95

Google Scholar

[10] S.P. Haibatollahi, P.H. Tehrani, Prediction of residual stress distribution in flash butt welded rails using electro-thermo-mechanical simulation, Int. J. Veh. Struct. Syst. 5 (2013) 53–57.

DOI: 10.4273/ijvss.5.2.02

Google Scholar

[11] H. Mansouri, A. Monshi, Microstructure and residual stress variations in weld zone of flash-butt welded railroads, Sci. Technol. Weld. Join. 9 (2004) 237–245.

DOI: 10.1179/136217104225012201

Google Scholar

[12] Z. Cal, M. Nawafune, N. Ma, Y. Qu, B. Cao, H. Murakawa, Residual Stresses in Flash Butt Welded Rail, Trans. JWRI. 40 (2011) 79–87.

Google Scholar

[13] H.B. Pereira, E. Anderson, A. Echeverri, L. Henrique, D. Alves, H. Goldenstein, Evaluation of the Effect of Heat Input and Cooling Rate of Rail Flash-Butt Welding using Finite Element Method Simulation, Soldag. Inspeção. 27 (2022) 1–18. https://doi.org/https://doi.org/.

DOI: 10.1590/0104-9224/SI27.01

Google Scholar

[14] K. Saita, M. Ueda, T. Miyazaki, Developing technologies to improve the reliability of flash-butt welds, 11th Int. Heavy Haul Assoc. Conf. (2017) 208–215.

Google Scholar

[15] N. Ma, Z. Cai, H. Huang, D. Deng, H. Murakawa, J. Pan, Investigation of welding residual stress in flash-butt joint of U71Mn rail steel by numerical simulation and experiment, Mater. Des. 88 (2015) 1296–1309.

DOI: 10.1016/j.matdes.2015.08.124

Google Scholar

[16] R.R. Porcaro, G.L. Faria, L.B. Godefroid, G.R. Apolonio, L.C. Cândido, E.S. Pinto, Microstructure and mechanical properties of a flash butt welded pearlitic rail, J. Mater. Process. Technol. 270 (2019) 20–27.

DOI: 10.1016/j.jmatprotec.2019.02.013

Google Scholar

[17] AREMA, Manual for railway engineering, American Railway Engineering and Maintenance-of-Way Association, 2010.

Google Scholar

[18] International Heavy Haul Association (IHHA), Guidelines to Best Practices for Heavy Haul Railway Operation: Wheel and Rail Interface Issues, First Edit, Virginia Beach, 2001.

Google Scholar

[19] H.B. Pereira, E.A.A. Echeverri, L.H.D. Alves, H. Goldenstein, Influência das Propriedades Mecânicas e Físicas Dependentes da Temperatura nas Tensões Residuais por Simulação de Soldagem de Trilhos por Flash-Butt, V Simpósio Eng. Ferrov. (2022).

DOI: 10.17648/sef-2022-146919

Google Scholar

[20] L. Weingrill, J. Krutzler, N. Enzinger, Temperature Field Evolution during Flash Butt Welding of Railway Rails, Mater. Sci. Forum. 879 (2016) 2088–2093. https://doi.org/10.4028/ www.scientific.net/msf.879.2088.

DOI: 10.4028/www.scientific.net/msf.879.2088

Google Scholar

[21] L. Weingrill, M.B. Nasiri, N. Enzinger, Thermo-metallurgically coupled numerical simulation and validation of multi-layer gas metal arc welding of high strength pearlitic rails, Weld. World. 63 (2019) 63–73.

DOI: 10.1007/s40194-018-0639-x

Google Scholar

[22] E.A. Ariza, M.A. Martorano, N.B. De Lima, A.P. Tschiptschin, Numerical simulation with thorough experimental validation to predict the build-up of residual stresses during quenching of carbon and low-alloy steels, ISIJ Int. 54 (2014) 1396–1405.

DOI: 10.2355/isijinternational.54.1396

Google Scholar

[23] H.K.D.H. Bhadeshia, Material Factors, in: Handb. Residual Stress Deform. Steel, ASM International, Materials Park, 2022.

Google Scholar

[24] R. Schröder, Influences on development of thermal and residual stresses in quenched steel cylinders of different dimensions, Mater. Sci. Technol. 1 (1985) 754–764.

DOI: 10.1179/mst.1985.1.10.754

Google Scholar

[25] R. Pietzsch, M. Brzoza, Y. Kaymak, E. Specht, A. Bertram, Simulation of the distortion of long steel profiles during cooling, J. Appl. Mech. 74 (2007) 427–437.

DOI: 10.1115/1.2338050

Google Scholar

[26] A.L.S. Cezário, G.L. de Faria, Proposition of an empirical functional equation to predict the kinetics of austenite to ferrite transformation in a continuous cooled IF-Ti-stabilized steel, Mater. Res. 24 (2021) 1–10.

DOI: 10.1590/1980-5373-MR-2020-0498

Google Scholar

[27] K.F. Rodrigues, G.L. De Faria, Characterization and prediction of continuous cooling transformations in rail steels, Mater. Res. 24 (2021).

DOI: 10.1590/1980-5373-MR-2020-0519

Google Scholar

[28] M. Avrami, Kinetics of Phase Change. II - Transformation-Time Relations for Random Distribution of Nuclei, J. Chem. Phys. 8 (1940) 212–224.

DOI: 10.1063/1.1750631

Google Scholar

[29] W.A. Johnson, R.F. Mehl, Reaction Kinetics in Processes of Nucleation and Growth, Metall. Mater. Trans. (1939).

Google Scholar

[30] A.L.V.D. Costa e Silva, P.R. Mei, Aços e Ligas Especiais, 3rd ed., Blucher, 2010.

Google Scholar

[31] H.S. Yang, H.K.D.H. Bhadeshia, Austenite grain size and the martensite-start temperature, Scr. Mater. 60 (2009) 493–495.

DOI: 10.1016/j.scriptamat.2008.11.043

Google Scholar

[32] M. Nikravesh, M. Naderi, G.H. Akbari, Influence of hot plastic deformation and cooling rate on martensite and bainite start temperatures in 22MnB5 steel, Mater. Sci. Eng. A. 540 (2012) 24–29.

DOI: 10.1016/j.msea.2012.01.018

Google Scholar

[33] A. Stormvinter, A. Borgenstam, J. Ågren, Thermodynamically based prediction of the martensite start temperature for commercial steels, Metall. Mater. Trans. A. 43A (2012) 3870–3879.

DOI: 10.1007/s11661-012-1171-z

Google Scholar

[34] H. Colpaert, Metalografia dos produtos siderúrgicos comuns, Edgard Blucher, 1959.

Google Scholar

[35] H.K.D.H. Bhadeshia, Thermodynamic analysis of isothermal transformation diagrams, Met. Sci. 16 (1982) 159–165.

DOI: 10.1179/030634582790427217

Google Scholar