From Material Requirements to the Rolling Schedule - Fast Material-Oriented Roll Pass Design for Long Products with the Open Source Framework PyRolL

Article Preview

Abstract:

New groove pass series for long products must be developed by backward engineering starting with the necessary mechanical properties and geometry of the final shape, with a highly iterative manual effort and with numerous manual decisions. Usually, established groove sequences are adopted in this process without consideration of material requirements of the rolled materials and work roll limitations, while other groove shapes may provide better final results. In order to achieve precision in the material flow, time-consuming FE-Methods are already being used in the reverse engineering. The aim of the presented fast approach is to obtain an optimal roll contour for simple irregular groove sequences using generalized, roll-technical justified and experimentally evaluated design criteria coupled with a fast 3D approach for stress state, material flow and fast approaches for the assessment of the elastic stress state resp. work safety of the rolls. By direct coupling the material flow calculation e.g. with fast microstructure models the microstructure development and the required end properties are integrated into the optimization process. Parts of the calculation code discussed are available via the open source project PyRolL which is continuously updated by the Center of Groove Pass Design of TU Bergakademie Freiberg and free available within the terms of the BSD-3-Clause License [1]. The Python-based framework allows maximum adaptability to own needs via a flexible plugin system for inclusion of own models and routines.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

129-134

Citation:

Online since:

December 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] PyRolL-Project. URL: https://pyroll.readthedocs.io/.

Google Scholar

[2] M. Schmidtchen, P. Adamyanets, and R. Kawalla. "Model Approaches for Simulation of Processes in Rod and Wire Production". In: Materials Science Forum 892 (2017), pp.34-42.

DOI: 10.4028/www.scientific.net/msf.892.34

Google Scholar

[3] M. Schmidtchen, F. Hoffmann, and U. Prahl. "Development of Fast Simulation Tools with Higher Modelling Depth for Improved Description of Local Material Flow, Stress State and Microstructure in Breakdown and Shaping Grooves". In: Der Kalibreur 80 (2020), pp.27-40.

Google Scholar

[4] M. Schmidtchen and U. Prahl. "Status of developments in groove pass design for asymmetric profiles". In: Der Kalibreur 81 (2021), pp.15-32. ISSN: 0022-796X.

Google Scholar

[5] M. Schmidtchen, M. Weiner, C. Renzing, M. Stirl, and U. Prahl. "Fast, fully automated roller design for simple irregular profile geometries - possibilities and current limitations". In: Der Kalibreur 82 (2023).

Google Scholar

[6] T. Gladman. The physical metallurgy of microalloyed steels. Book / The Institute of Materials 615. OCLC: 37313990. London: The Inst. of Materials, 1997. 363 pp. ISBN: 978-0-901716- 81-1.

Google Scholar

[7] J. G. Lenard, M. Pietrzyk, and L. Cser. Mathematical and physical simulation of the properties of hot rolled products. 1. ed. Amsterdam [u.a.] York: Elsevier, 1999. 364 pp. ISBN: 978-0-08- 042701-0.

DOI: 10.1016/b978-008042701-0/50001-2

Google Scholar

[8] R. Rodríguez and I. Gutierrez. "Mechanical behaviour of steels with mixed microstructures". In: TMP 2004 / 2nd International conference on Thermomechanical Processing of Steels, Jun 15-17, 2004, Liege, Belgium. 2nd International Conference on Thermomechanical Processing of Steels, TMP'2004. Liege, Belgium: Stahleisen, 2004, pp.356-363.

DOI: 10.1002/srin.200300170

Google Scholar

[9] Antonio Gorni. "Steel Forming and Heat Treating Handbook". In: (2015). Publisher: Unpublished. DOI: 10.13140/RG.2.1.1695.9764. URL: http://rgdoi.net/10.13140/RG.2. 1.1695.9764 (visited on 05/31/2023).

Google Scholar

[10] P. D. Hodgson and R. K. Gibbs. "A Mathematical Model to Predict the Mechanical Properties of Hot Rolled C-Mn and Microalloyed Steels." In: ISIJ International 32.12 (1992), pp.1329-1338

DOI: 10.2355/isijinternational.32.1329

Google Scholar

[12] A. Brovot. Das Kaliberieren der Walzen. Verlag von Arthur Felix, 1903.

Google Scholar

[13] W. Tafel. Walzen und Walzenkalibrieren. 2. Dortmund: Verlag von Fr. Wilh. Ruhfus, 1923.

Google Scholar

[14] O. Emicke. "Zeichnerische Bestimmung der Stichfolge beim Walzen frei breitender Querschnitte". In: Stahl und Eisen 54.20 (1934). Number: 20, pp.492-517.

Google Scholar

[15] O. Emicke. Nomogramme für die Praxis des Warm- und Kaltwalzens von Stahl, Edelstählen und Nichteisenmetallen. 1.Aufl. Berlin: Akademie Verlag, 1962. 304 pp.

Google Scholar

[16] H. Hoff and T. Dahl. Walzen und Kalibrieren. 12. Düsseldorf: Verlag Stahleisen, 1954.

Google Scholar

[17] Z. Wusatowski. Fundamentals of Rolling. Vol. 1. London: Pergamon Press, 1969. ISBN: 978- 0-08-012276-2.

Google Scholar

[18] H. Neumann. Kalibrieren von Walzen. 2nd ed. Leipzig: VEB Deutscher Verlag für Grundstoffindustrie, 1975. 472 pp.

Google Scholar

[19] A. Hensel, P. Poluchin, and W. Poluchin. Technologie der Metallformung. 1st ed. Vol. 1. Leipzig: Deutscher Verlag für Grundstoffindustrie, 1990. ISBN: 3-342-00311-1.

Google Scholar