ECCC History and Value of Work Done for the Introduction and Use of Newer Materials

Article Preview

Abstract:

ECCC is a voluntary grouping formed in 1991 to co-ordinate Europe-wide development of creep data to be used to design components for high temperature plants, bases on a Memorandum of Understanding, signed by all partners. The ECCC is deeply involved in EU coordination for the development of knowledge on the damage caused by the creep phenomenon and the consequent reliability assessment activities. Strong links exist with the technical committees of the European Standard organizations, giving an efficient network to mutually exchange of technical information relating to current/future activities for the improvement or development of new materials. For several years ECCC (1991-2005) concentrated efforts by EU support. Nevertheless, revitalization of ECCC has been generated by definition of Joint Industrial Project (JIP) started in 2011 and still running (JIP4). ECCC has a very strong link to industrial applications and it is presently organized in four Work Packages: WG1 on common procedures, data generation/assessment and three material specific Working groups: ferritic steels, austenitic steels, nickel-based alloys. Two main outputs are ECCC data sheets and ECCC Recommendation Volumes. The ECCC activities are almost completely carried out by members’ contribution-in-kind. The ECCC plays a part of its role, in term of generation of design properties for new materials introduction into power plant and related applications. It therefore engages a crucial role in assessing and realising the potential of new developments.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

135-152

Citation:

Online since:

December 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Materials for Ultra-Supercritical and Advanced Ultra-Supercritical Power Plants: Edited by A. Di Gianfrancesco, Woodhead Publishing series in Energy, number 104: Elsevier 2017. ISBN: 978-0-08-100552-1 (print) or 3 (online)

DOI: 10.1016/b978-0-08-100552-1.09002-3

Google Scholar

[2] https://www.eccc-creep.com/eccc-recommendations-volumes.html

Google Scholar

[3] https://www.eccc-creep.com/eccc-data-sheets/

Google Scholar

[4] Holdsworth, S. (2010) Advances in the Assessment of Creep Data, 9th Liege Conference: Materials for Advanced Power Engineering 2010, edited by J. Lecomte-Beckers, Q. Contrepois, T. Beck and B. Kuhn. pp.970-985

Google Scholar

[5] Holmström, S., Li, Y., Dymacek, P., Vacchieri, E., Jeffs, S. P., Lancaster, R. J., ... & Andres, D. (2018). Creep strength and minimum strain rate estimation from Small Punch Creep tests. Materials Science and Engineering: A, 731, 161-172.

DOI: 10.1016/j.msea.2018.06.005

Google Scholar

[6] J H Rantala, W Sun, J Eaton-McKay, A Bridges, S J Brett: CEN Workshop Agreement on Impression Creep – Round Robin Testing: 978-1-7399925-2-1 "ECCC2023 Conference Proceedings"

Google Scholar

[7] M. Schwienheer, F. Kölzow: Creep Rupture Data Assessment - new uncertain challenges require new uncertain answers: 978-1-7399925-2-1 "ECCC2023 Conference Proceedings"

Google Scholar

[8] CEN Technical Report, New approaches to determine negligible creep of steels for EN 13445, CEN/TC 54 WG59, Submitted to TC54, under review, 2022.

Google Scholar

[9] Baylac, G., Bullough, C., Holmström, S., Smith, W., Tonti, A., & Forot, C. (2022). New approaches to determine negligible creep. Materials at High Temperatures, 39(6), 668-677.

DOI: 10.1080/09603409.2022.2135735

Google Scholar

[10] C. Bullough, S Holmström, A. Tonti: Assessment of Historical Datasets to Determine Negligible Creep978-1-7399925-2-1 "ECCC2023 Conference Proceedings"

Google Scholar

[11] EN 10371:2021 Metallic materials - Small punch test method, Technical Committee CEN/TC 459/SC 1 "Test methods for steel (other than chemical analysis)", AFNOR, 2021.

Google Scholar

[12] A. Riva, C. Bullough, A. Norman, M. Subanovic, M. Schwienheer, J. Hald: The 2019 ECCC Datasheet for Grade 91 – Using ECCC Recommendations to Resolve the Rupture Properties of an Industry Workhorse: Proceeding of ECC2021: ISBN ISBN: 978-1-7399925-0-7

Google Scholar

[13] EN 10216-2:2013+A1:2019: Seamless steel tubes for pressure purposes -Technical delivery conditions – Part 2: non-alloy and alloy tubes with specified elevated temperature properties: 2020-01-02

DOI: 10.3403/30207489

Google Scholar

[14] EN 10216-2:2013+A1:2019: Seamless steel tubes for pressure purposes -Technical delivery conditions – Part 2: non-alloy and alloy tubes with specified elevated temperature properties – Correction 1: 2022-06-23

DOI: 10.3403/30207489

Google Scholar

[15] P. Mayr, F. Méndez Martin, M. Albu, H. Cerjak, Materials at High Temperatures 27 (1) (2010) 67–72.

Google Scholar

[16] H.K. Danielsen, P.E. Di Nunzio, J. Hald, Metallurgical and Materials Transactions A 44A (2013) 2445–2452.

Google Scholar

[17] H.K. Danielsen, J. Hald, Materials Science and Engineering A 505 (2009) 169–177.

Google Scholar

[18] L. Cipolla, H. K Danielsen, D. Venditti, P.E. Di Nunzio, J. Hald, M.A.J. Somers, Acta Materialia 58 (2010) 669–679.

DOI: 10.1016/j.actamat.2009.09.045

Google Scholar

[19] H.K. Danielsen, J. Hald, M.A.J. Somers, Scripta Materialia 66 (2012) 261–264.

Google Scholar

[20] K. Sawada, H. Kushima, K. Kimura, ISIJ International 46 (5) (2006) 769–775.

Google Scholar

[21] http://www.matcalc-engineering.com

Google Scholar

[22] M. Speicher, D. Willer, R. Scheck, J. Hald: Creep behaviour and microstructure evolution of P91 steel after 200,000 hours at 600 °C: 978-1-7399925-2-1 "ECCC2023 Conference Proceedings"

Google Scholar

[23] P.J. Ennis et al. Microstructural stability and creep rupture strength of the martensitic steel P92 for advanced power plant: Acta Mater: (1997)

DOI: 10.1016/s1359-6454(97)00176-6

Google Scholar

[24] C. Bullough, M. Norman, J. Hald, S. Holmström, M. Ortolani, M. Subanovic, M. Schwienheer: The Assessment of Creep Rupture Properties for the ECCC 2019 Datasheet for Grade 92: Proceeding of ECC2021: ISBN ISBN: 978-1-7399925-0-7

Google Scholar

[25] D. Allen: Analysis of Factors Controlling Creep Ductility and Rupture Performance in Grade 92 Steel; 978-1-7399925-2-1 "ECCC2023 Conference Proceedings"

Google Scholar

[26] A. Gotti, A. Di Gianfrancesco, A. Ferrara, E. Gariboldi, G. Merckling, S. Navone, S. Parodi, E. Poggio, D. Ripamonti, S. Verdino: Creep properties of ASTM A335 P92 pipe parent material and erection welded joint simulation: effect of 1 or 3 PWHT: Proceeding of ECC2021: ISBN ISBN: 978-1-7399925-0-7

DOI: 10.1080/09603409.2022.2135720

Google Scholar

[27] D. Allen: Analysis of ECCC Cross-Weld Creep Test Data on Grade 92 Steel: 978-1-7399925-2-1 "ECCC2023 Conference Proceedings"

Google Scholar

[28] E. Anelli, S. Holmström: Heavy wall forged pipes of grade 92: effect of heat treatment conditions on microstructure and creep resistance: Proceeding of ECC2021: ISBN ISBN: 978-1-7399925-0-7

DOI: 10.1080/09603409.2022.2058231

Google Scholar

[29] S. Lockeyr: An Update on the Development of the UK MarBN steel, IBN1: 978-1-7399925-2-1 "ECCC2023 Conference Proceedings"

Google Scholar

[30] T.-U. Kern, M. Schwienheer, G. Maier: Creep and Creep-Fatigue interaction for rotor material made of MarBN (Howeflex): 978-1-7399925-2-1 "ECCC2023 Conference Proceedings"

Google Scholar

[31] P. Lamagnère, Y. Lejeail, G. Aiello, E. Gaganidze, M. Rieth, S. Holmström, D. Terentyev, G. Pintsuk, M. Zmitko: High temperature properties of Reduced Activation Ferritic Martensitic steels for fusion applications in ITER: Status of activities and design needs for EUROFER97 steel: Proceeding of ECCC2023: ISBN

Google Scholar

[32] Technical Specifications EUROFER Material Database F4E-2008-GRT-010 (PNS-MD)

Google Scholar

[33] ASME BPVC.CC.BPV-(2019)

Google Scholar

[34] C. Bullough, M. Spindler, G. Chai, P. Barnard Preparation of an ECCC Creep Datasheet on Sanicro 25 Tubes for Power Generation and Petrochemical Use: 978-1-7399925-2-1 "ECCC2023 Conference Proceedings"

Google Scholar

[35] A. Facco, M. Blat-Yrieix, F. Delabrouille, V. Barbe, L. Nicolas3, L. Vincent, S. Vincent, J. Rantala, K.F. Nilsson, S. Holmström, L. Vaillant De Guelis: Understanding creep behaviour of 316L(N) welds for sodium-cooled fast reactor applications – link between creep properties and microstructure: 978-1-7399925-2-1 "ECCC2023 Conference Proceedings"

Google Scholar

[36] RCC-MRx Code AFCEN, Regles de conception et de construction des materiels mecaniques des installations nucleaires hautes temperatures, experimentales et de fusion, 2018.

Google Scholar

[37] E. Poggio, D.J. Allen, P. Barnard, C. Bullough, E. Debruycker, R. Krein, A. Gotti, A. Riva, M. Schwienheer, M. Speicher, M. Spindler: ECCC Working Group 3C – Superalloys: Overview on the activities and future perspectives978-1-7399925-2-1 "ECCC2023 Conference Proceedings"

Google Scholar

[38] D.J. Allen, E. De Bruycker, M. Gomes, S. Holmstrom, J-P. Keustermans, H. Kolkman, C. Messelier-Gouze, E. Vacchieri: ECCC Test Programme and Data Assessment on GTD111 Creep Rupture, Strain and Ductility: ECCC2014 Conference proceedings, p.510: Editor A. Tonti, A. Di Gianfrancesco: ISBN 978-88-7484-510-1

Google Scholar

[39] S. Chandra et al., Creep Rupture Data Assessment of Alloy 617, ECCC Creep Conference, 12-14 September 2005, London.

Google Scholar

[40] A. Riva, M. Spindler, R. Krein, O. Tassa, E. Poggio: A617 The new ECCC Datasheet for Alloy 617: multi-regime models to cover a wide range of temperature; ECCC2021 Conference proceeding edited by P. Barnard, ISBN: 978-1-7399925-0-7

Google Scholar

[41] Bullough, C., DeBruycker, E., Poggio, E., Schwienheer, M., & Spindler, M. (2022). Creep rupture properties of ATI 718Plus–an approach to assessing sparse data. Materials at High Temperatures, 39(6), 655-667.

DOI: 10.1080/09603409.2022.2135721

Google Scholar

[42] ASME Boiler Pressure Vessel Codes: Case 2702-3 Ni-25Cr-20Co Material Section I.

Google Scholar

[43] ASTM B983

Google Scholar

[44] Bullough, C., Krein, R., Lombardi, P., Spindler, M., & Poggio, E. (2017, September). Development of an ECCC Interim Creep Rupture Datasheet for Alloy 617B using a Strength Averaging and Blending Approach. In Proceedings of the 4th International ECCC Creep & Fracture Conference, Düsseldorf, Germany (pp.10-14).

Google Scholar

[45] A. Sadek, H. Song, Optimization of heat treatment parameters for additive manufacturing Hastelloy X, Contributed papers from Materials Science and Technology 2019 (MS&T19), Sep 29-Oct 3, Oregon, USA.

DOI: 10.7449/2019/mst_2019_13_21

Google Scholar

[46] E. De Bruycker, A. Gotti, E. Poggio, K. Boschmans, O. Tassa, A. Costa, A. Sanguineti: Short-term creep behaviour of Additive Manufactured Hastelloy X material: ECCC2021 Conference proceeding edited by P. Barnard, ISBN: 978-1-7399925-0-7

DOI: 10.1080/09603409.2022.2041849

Google Scholar

[47] https://www.specialmetals.com/documents/technical-bulletins/inconel/inconel-alloy-718.pdf

Google Scholar

[48] https://www.atimaterials.com/Products/Documents/datasheets/nickel-cobalt/nickel-based/ati_718plus_tds_en_v3.pdf

Google Scholar

[49] https://www.pccenergy.com/documents/onshore/inconel-alloy-740.pdf

Google Scholar

[50] SAE AMS5536 HASTELLOY

Google Scholar