[1]
Materials for Ultra-Supercritical and Advanced Ultra-Supercritical Power Plants: Edited by A. Di Gianfrancesco, Woodhead Publishing series in Energy, number 104: Elsevier 2017. ISBN: 978-0-08-100552-1 (print) or 3 (online)
DOI: 10.1016/b978-0-08-100552-1.09002-3
Google Scholar
[2]
https://www.eccc-creep.com/eccc-recommendations-volumes.html
Google Scholar
[3]
https://www.eccc-creep.com/eccc-data-sheets/
Google Scholar
[4]
Holdsworth, S. (2010) Advances in the Assessment of Creep Data, 9th Liege Conference: Materials for Advanced Power Engineering 2010, edited by J. Lecomte-Beckers, Q. Contrepois, T. Beck and B. Kuhn. pp.970-985
Google Scholar
[5]
Holmström, S., Li, Y., Dymacek, P., Vacchieri, E., Jeffs, S. P., Lancaster, R. J., ... & Andres, D. (2018). Creep strength and minimum strain rate estimation from Small Punch Creep tests. Materials Science and Engineering: A, 731, 161-172.
DOI: 10.1016/j.msea.2018.06.005
Google Scholar
[6]
J H Rantala, W Sun, J Eaton-McKay, A Bridges, S J Brett: CEN Workshop Agreement on Impression Creep – Round Robin Testing: 978-1-7399925-2-1 "ECCC2023 Conference Proceedings"
Google Scholar
[7]
M. Schwienheer, F. Kölzow: Creep Rupture Data Assessment - new uncertain challenges require new uncertain answers: 978-1-7399925-2-1 "ECCC2023 Conference Proceedings"
Google Scholar
[8]
CEN Technical Report, New approaches to determine negligible creep of steels for EN 13445, CEN/TC 54 WG59, Submitted to TC54, under review, 2022.
Google Scholar
[9]
Baylac, G., Bullough, C., Holmström, S., Smith, W., Tonti, A., & Forot, C. (2022). New approaches to determine negligible creep. Materials at High Temperatures, 39(6), 668-677.
DOI: 10.1080/09603409.2022.2135735
Google Scholar
[10]
C. Bullough, S Holmström, A. Tonti: Assessment of Historical Datasets to Determine Negligible Creep978-1-7399925-2-1 "ECCC2023 Conference Proceedings"
Google Scholar
[11]
EN 10371:2021 Metallic materials - Small punch test method, Technical Committee CEN/TC 459/SC 1 "Test methods for steel (other than chemical analysis)", AFNOR, 2021.
Google Scholar
[12]
A. Riva, C. Bullough, A. Norman, M. Subanovic, M. Schwienheer, J. Hald: The 2019 ECCC Datasheet for Grade 91 – Using ECCC Recommendations to Resolve the Rupture Properties of an Industry Workhorse: Proceeding of ECC2021: ISBN ISBN: 978-1-7399925-0-7
Google Scholar
[13]
EN 10216-2:2013+A1:2019: Seamless steel tubes for pressure purposes -Technical delivery conditions – Part 2: non-alloy and alloy tubes with specified elevated temperature properties: 2020-01-02
DOI: 10.3403/30207489
Google Scholar
[14]
EN 10216-2:2013+A1:2019: Seamless steel tubes for pressure purposes -Technical delivery conditions – Part 2: non-alloy and alloy tubes with specified elevated temperature properties – Correction 1: 2022-06-23
DOI: 10.3403/30207489
Google Scholar
[15]
P. Mayr, F. Méndez Martin, M. Albu, H. Cerjak, Materials at High Temperatures 27 (1) (2010) 67–72.
Google Scholar
[16]
H.K. Danielsen, P.E. Di Nunzio, J. Hald, Metallurgical and Materials Transactions A 44A (2013) 2445–2452.
Google Scholar
[17]
H.K. Danielsen, J. Hald, Materials Science and Engineering A 505 (2009) 169–177.
Google Scholar
[18]
L. Cipolla, H. K Danielsen, D. Venditti, P.E. Di Nunzio, J. Hald, M.A.J. Somers, Acta Materialia 58 (2010) 669–679.
DOI: 10.1016/j.actamat.2009.09.045
Google Scholar
[19]
H.K. Danielsen, J. Hald, M.A.J. Somers, Scripta Materialia 66 (2012) 261–264.
Google Scholar
[20]
K. Sawada, H. Kushima, K. Kimura, ISIJ International 46 (5) (2006) 769–775.
Google Scholar
[21]
http://www.matcalc-engineering.com
Google Scholar
[22]
M. Speicher, D. Willer, R. Scheck, J. Hald: Creep behaviour and microstructure evolution of P91 steel after 200,000 hours at 600 °C: 978-1-7399925-2-1 "ECCC2023 Conference Proceedings"
Google Scholar
[23]
P.J. Ennis et al. Microstructural stability and creep rupture strength of the martensitic steel P92 for advanced power plant: Acta Mater: (1997)
DOI: 10.1016/s1359-6454(97)00176-6
Google Scholar
[24]
C. Bullough, M. Norman, J. Hald, S. Holmström, M. Ortolani, M. Subanovic, M. Schwienheer: The Assessment of Creep Rupture Properties for the ECCC 2019 Datasheet for Grade 92: Proceeding of ECC2021: ISBN ISBN: 978-1-7399925-0-7
Google Scholar
[25]
D. Allen: Analysis of Factors Controlling Creep Ductility and Rupture Performance in Grade 92 Steel; 978-1-7399925-2-1 "ECCC2023 Conference Proceedings"
Google Scholar
[26]
A. Gotti, A. Di Gianfrancesco, A. Ferrara, E. Gariboldi, G. Merckling, S. Navone, S. Parodi, E. Poggio, D. Ripamonti, S. Verdino: Creep properties of ASTM A335 P92 pipe parent material and erection welded joint simulation: effect of 1 or 3 PWHT: Proceeding of ECC2021: ISBN ISBN: 978-1-7399925-0-7
DOI: 10.1080/09603409.2022.2135720
Google Scholar
[27]
D. Allen: Analysis of ECCC Cross-Weld Creep Test Data on Grade 92 Steel: 978-1-7399925-2-1 "ECCC2023 Conference Proceedings"
Google Scholar
[28]
E. Anelli, S. Holmström: Heavy wall forged pipes of grade 92: effect of heat treatment conditions on microstructure and creep resistance: Proceeding of ECC2021: ISBN ISBN: 978-1-7399925-0-7
DOI: 10.1080/09603409.2022.2058231
Google Scholar
[29]
S. Lockeyr: An Update on the Development of the UK MarBN steel, IBN1: 978-1-7399925-2-1 "ECCC2023 Conference Proceedings"
Google Scholar
[30]
T.-U. Kern, M. Schwienheer, G. Maier: Creep and Creep-Fatigue interaction for rotor material made of MarBN (Howeflex): 978-1-7399925-2-1 "ECCC2023 Conference Proceedings"
Google Scholar
[31]
P. Lamagnère, Y. Lejeail, G. Aiello, E. Gaganidze, M. Rieth, S. Holmström, D. Terentyev, G. Pintsuk, M. Zmitko: High temperature properties of Reduced Activation Ferritic Martensitic steels for fusion applications in ITER: Status of activities and design needs for EUROFER97 steel: Proceeding of ECCC2023: ISBN
Google Scholar
[32]
Technical Specifications EUROFER Material Database F4E-2008-GRT-010 (PNS-MD)
Google Scholar
[33]
ASME BPVC.CC.BPV-(2019)
Google Scholar
[34]
C. Bullough, M. Spindler, G. Chai, P. Barnard Preparation of an ECCC Creep Datasheet on Sanicro 25 Tubes for Power Generation and Petrochemical Use: 978-1-7399925-2-1 "ECCC2023 Conference Proceedings"
Google Scholar
[35]
A. Facco, M. Blat-Yrieix, F. Delabrouille, V. Barbe, L. Nicolas3, L. Vincent, S. Vincent, J. Rantala, K.F. Nilsson, S. Holmström, L. Vaillant De Guelis: Understanding creep behaviour of 316L(N) welds for sodium-cooled fast reactor applications – link between creep properties and microstructure: 978-1-7399925-2-1 "ECCC2023 Conference Proceedings"
Google Scholar
[36]
RCC-MRx Code AFCEN, Regles de conception et de construction des materiels mecaniques des installations nucleaires hautes temperatures, experimentales et de fusion, 2018.
Google Scholar
[37]
E. Poggio, D.J. Allen, P. Barnard, C. Bullough, E. Debruycker, R. Krein, A. Gotti, A. Riva, M. Schwienheer, M. Speicher, M. Spindler: ECCC Working Group 3C – Superalloys: Overview on the activities and future perspectives978-1-7399925-2-1 "ECCC2023 Conference Proceedings"
Google Scholar
[38]
D.J. Allen, E. De Bruycker, M. Gomes, S. Holmstrom, J-P. Keustermans, H. Kolkman, C. Messelier-Gouze, E. Vacchieri: ECCC Test Programme and Data Assessment on GTD111 Creep Rupture, Strain and Ductility: ECCC2014 Conference proceedings, p.510: Editor A. Tonti, A. Di Gianfrancesco: ISBN 978-88-7484-510-1
Google Scholar
[39]
S. Chandra et al., Creep Rupture Data Assessment of Alloy 617, ECCC Creep Conference, 12-14 September 2005, London.
Google Scholar
[40]
A. Riva, M. Spindler, R. Krein, O. Tassa, E. Poggio: A617 The new ECCC Datasheet for Alloy 617: multi-regime models to cover a wide range of temperature; ECCC2021 Conference proceeding edited by P. Barnard, ISBN: 978-1-7399925-0-7
Google Scholar
[41]
Bullough, C., DeBruycker, E., Poggio, E., Schwienheer, M., & Spindler, M. (2022). Creep rupture properties of ATI 718Plus–an approach to assessing sparse data. Materials at High Temperatures, 39(6), 655-667.
DOI: 10.1080/09603409.2022.2135721
Google Scholar
[42]
ASME Boiler Pressure Vessel Codes: Case 2702-3 Ni-25Cr-20Co Material Section I.
Google Scholar
[43]
ASTM B983
Google Scholar
[44]
Bullough, C., Krein, R., Lombardi, P., Spindler, M., & Poggio, E. (2017, September). Development of an ECCC Interim Creep Rupture Datasheet for Alloy 617B using a Strength Averaging and Blending Approach. In Proceedings of the 4th International ECCC Creep & Fracture Conference, Düsseldorf, Germany (pp.10-14).
Google Scholar
[45]
A. Sadek, H. Song, Optimization of heat treatment parameters for additive manufacturing Hastelloy X, Contributed papers from Materials Science and Technology 2019 (MS&T19), Sep 29-Oct 3, Oregon, USA.
DOI: 10.7449/2019/mst_2019_13_21
Google Scholar
[46]
E. De Bruycker, A. Gotti, E. Poggio, K. Boschmans, O. Tassa, A. Costa, A. Sanguineti: Short-term creep behaviour of Additive Manufactured Hastelloy X material: ECCC2021 Conference proceeding edited by P. Barnard, ISBN: 978-1-7399925-0-7
DOI: 10.1080/09603409.2022.2041849
Google Scholar
[47]
https://www.specialmetals.com/documents/technical-bulletins/inconel/inconel-alloy-718.pdf
Google Scholar
[48]
https://www.atimaterials.com/Products/Documents/datasheets/nickel-cobalt/nickel-based/ati_718plus_tds_en_v3.pdf
Google Scholar
[49]
https://www.pccenergy.com/documents/onshore/inconel-alloy-740.pdf
Google Scholar
[50]
SAE AMS5536 HASTELLOY
Google Scholar