High-Pressure Torsion: From Miniature Earthquake to the Origin of Life

Article Preview

Abstract:

The high-pressure torsion (HPT) method, which is currently used as a severe plastic deformation process to develop advanced structural and functional materials, was first introduced to the public by Bridgman in 1935 as a tool to investigate the mechanism of deep-seated earthquakes. The HPT method was recently introduced as a new platform to simulate astronomical impacts on a miniature scale. Frequent impacts by small solar system bodies (meteoroids, asteroids and comets) about four billion years ago are considered a possible pathway for the delivery or synthesis of essential biomolecules required for life on the Earth. The application of HPT to glycine amino acid led to new justifications for some astronomical phenomena reported in comets or on the Earth such as the formation of alcohol. The extension of this application also led to the introduction of inorganic-biomolecule composites as new functional materials with good biocompatibility.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

167-173

Citation:

Online since:

December 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P.W. Bridgman, Effects of high shearing stress combined with high hydrostatic pressure, Phys. Rev. 48 (1935) 825–847.

DOI: 10.1103/physrev.48.825

Google Scholar

[2] K. Edalati, Z. Horita, Scaling-up of high pressure torsion using ring shape, Mater. Trans. 50 (2009) 92–95.

DOI: 10.2320/matertrans.md200822

Google Scholar

[3] A.P. Zhilyae, T.G. Langdon, Using high-pressure torsion for metal processing: fundamentals and applications, Prog. Mater. Sci. 53 (2008) 893–979.

DOI: 10.1016/j.pmatsci.2008.03.002

Google Scholar

[4] R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, Y.T. Zhu, Producing bulk ultrafine-grained materials by severe plastic deformation, JOM 58(4) (2006) 33–39.

DOI: 10.1007/s11837-006-0213-7

Google Scholar

[5] K. Edalati, Z. Horita, A review on high-pressure torsion (HPT) from 1935 to 1988, Mater. Sci. Eng. A 652 (2016) 325–352.

DOI: 10.1016/j.msea.2015.11.074

Google Scholar

[6] K. Edalati, A. Bachmaier, V.A. Beloshenko, Y. Beygelzimer, V.D. Blank, W.J. Botta, K. Bryła, J. Čížek, S. Divinski, N.A. Enikeev, Y. Estrin, G. Faraji, R.B. Figueiredo, M. Fuji, T. Furuta, T. Grosdidier, J. Gubicza, A. Hohenwarter, Z. Horita, J. Huot, Y. Ikoma, M. Janeček, M. Kawasaki, P. Krǎl, S. Kuramoto, T.G. Langdon, D.R. Leiva, V.I. Levitas, A. Mazilkin, M. Mito, H. Miyamoto, T. Nishizaki, R. Pippan, V.V. Popov, E.N. Popova, G. Purcek, O. Renk, Á. Révész, X. Sauvage, V. Sklenicka, W. Skrotzki, B.B. Straumal, S. Suwas, L.S. Toth, N. Tsuji, R.Z. Valiev, G. Wilde, M.J. Zehetbauer, X. Zhu, Nanomaterials by severe plastic deformation: review of historical developments and recent advances, Mater. Res. Lett. 10 (2022) 163–256.

DOI: 10.1080/21663831.2022.2029779

Google Scholar

[7] K. Edalati, Z. Horita, Y. Mine, High-pressure torsion of hafnium, Mater. Sci. Eng. A 527 (2010) 2136–2141.

DOI: 10.1016/j.msea.2009.11.060

Google Scholar

[8] S. Lee, K. Edalati, Z. Horita, Microstructures and mechanical properties of pure V and Mo processed by high-pressure torsion, Mater. Trans. 51 (2010) 1072-1079.

DOI: 10.2320/matertrans.m2009375

Google Scholar

[9] L. Chen, L. Ping, T. Ye, L. Lingfeng, X. Kemin, Z. Meng, Observations on the ductility and thermostability of tungsten processed from micropowder by improved high-pressure torsion, Rare Met. Mater. Eng. 45 (2016) 3089–3094.

DOI: 10.1016/s1875-5372(17)30059-0

Google Scholar

[10] P. Edalati, R. Floriano, Y. Tang, A. Mohammadi, K. Danielle Pereira, A. Ducati Luchessi, K. Edalati, Ultrahigh hardness and biocompatibility of high-entropy alloy TiAlFeCoNi processed by high-pressure torsion, Mater. Sci. Eng. C 112 (2020) 110908.

DOI: 10.1016/j.msec.2020.110908

Google Scholar

[11] P. Edalati, A. Mohammadi, M. Ketabchi, K. Edalati, Ultrahigh hardness in nanostructured dual-phase high-entropy alloy AlCrFeCoNiNb developed by high-pressure torsion, J. Alloys Compd. 884 (2021) 161101.

DOI: 10.1016/j.jallcom.2021.161101

Google Scholar

[12] P. Edalati, A. Mohammadi, M. Ketabchi, K. Edalati, Microstructure and microhardness of dual-phase high-entropy alloy by high-pressure torsion: twins and stacking faults in FCC and dislocations in BCC, J. Alloys Compd. 894 (2022) 162413.

DOI: 10.1016/j.jallcom.2021.162413

Google Scholar

[13] J.Y. Huang, Y.T. Zhu, X.Z. Liao, R.Z. Valiev, Amorphization of TiNi induced by high-pressure torsion, Phil. Mag. Lett. 84 (2004) 183–190.

DOI: 10.1080/09500830310001657353

Google Scholar

[14] C. Gammer, C. Mangler, H.P. Karnthaler, C. Rentenberger, Growth of nanosized chemically ordered domains in intermetallic FeAl made nanocrystalline by severe plastic deformation, Scr. Mater. 65 (2011) 57–60.

DOI: 10.1016/j.scriptamat.2011.03.002

Google Scholar

[15] K. Edalati, Y. Yokoyama, Z. Horita, High-pressure torsion of machining chips and bulk discs of amorphous Zr50Cu30Al10Ni10, Mater. Trans. 51 (2010) 23–26.

DOI: 10.2320/matertrans.mb200914

Google Scholar

[16] Á. Révész, Z. Kovács, Severe plastic deformation of amorphous alloys, Mater. Trans. 60 (2019) 1283–1293.

DOI: 10.2320/matertrans.mf201917

Google Scholar

[17] Y. Ikoma, K. Hayano, K. Edalati, K. Saito, Q. Guo, Z. Horita, Phase transformation and nanograin refinement of silicon by processing through high-pressure torsion, Appl. Phys. Lett. 101 (2012) 121908.

DOI: 10.1063/1.4754574

Google Scholar

[18] V.D. Blank, M.Y. Popov, B.A. Kulnitskiy, The effect of severe plastic deformations on phase transitions and structure of solids, Mater. Trans. 60 (2019) 1500–1505.

DOI: 10.2320/matertrans.mf201942

Google Scholar

[19] K. Edalati, Z. Horita, Correlations between hardness and atomic bond parameters of pure metals and semi-metals after processing by high-pressure torsion, Scr. Mater. 64 (2011) 161–164.

DOI: 10.1016/j.scriptamat.2010.09.034

Google Scholar

[20] Y. Ikoma, Severe plastic deformation of semiconductor materials using high-pressure torsion, Mater. Trans. 60 (2019) 1168–1176.

DOI: 10.2320/matertrans.mf201907

Google Scholar

[21] H. Razavi-Khosroshahi, K. Edalati, M. Arita, Z. Horita, M. Fuji, Plastic strain and grain size effect on high-pressure phase transformations in nanostructured TiO2 ceramics, Scr. Mater. 124 (2016) 59–62.

DOI: 10.1016/j.scriptamat.2016.06.022

Google Scholar

[22] Q. Wang, K. Edalati, Y. Koganemaru, S. Nakamura, M. Watanabe, T. Ishihara, Z. Horita, Photocatalytic hydrogen generation on low-bandgap black zirconia (ZrO2) produced by high-pressure torsion, J. Mater. Chem. A 8 (2020) 3643–3650.

DOI: 10.1039/c9ta11839j

Google Scholar

[23] K. Edalati, M. Arimura, Y. Ikoma, T. Daio, M. Miyata, D.J. Smith, Z. Horita, Plastic deformation of BaTiO3 ceramics by high-pressure torsion and changes in phase transformations, optical and dielectric properties, Mater. Res. Lett. 3 (2015) 216–221.

DOI: 10.1080/21663831.2015.1065454

Google Scholar

[24] K. Edalati, Z. Horita, H. Fujiwara, K. Ameyama, Cold consolidation of ball-milled titanium powders using high-pressure torsion, Metall. Mater. Trans. A 41 (2010) 3308–3317.

DOI: 10.1007/s11661-010-0400-6

Google Scholar

[25] A. Bachmaier, R. Pippan, High-pressure torsion deformation induced phase transformations and formations: new material combinations and advanced properties, Mater. Trans. 60 (2019) 1256–1269.

DOI: 10.2320/matertrans.mf201930

Google Scholar

[26] V.I. Levitas, High-pressure phase transformations under severe plastic deformation by torsion in rotational anvils, Mater. Trans. 60 (2019) 1294–1301.

DOI: 10.2320/matertrans.mf201923

Google Scholar

[27] A. Mazilkin, B. Straumal, A. Kilmametov, P. Straumal, B. Baretzky, Phase transformations induced by severe plastic deformation, Mater. Trans. 60 (2019) 1489–1499.

DOI: 10.2320/matertrans.mf201938

Google Scholar

[28] A. Alhamidi, K. Edalati, Z. Horita, S. Hirosawa, K. Matsuda, D. Terada, Softening by severe plastic deformation and hardening by annealing of aluminum-zinc alloy: significance of elemental and spinodal decompositions, Mater. Sci. Eng. A 610 (2014) 17–27.

DOI: 10.1016/j.msea.2014.05.026

Google Scholar

[29] K. Edalati, Z. Horita, R.Z. Valiev, Transition from poor ductility to room-temperature superplasticity in a nanostructured aluminum alloy, Sci. Rep. 8 (2018) 6740.

DOI: 10.1038/s41598-018-25140-1

Google Scholar

[30] K. Edalati, R. Uehiro, K. Fujiwara, Y. Ikeda, H.W. Li, X. Sauvage, R.Z. Valiev, E. Akiba, I. Tanaka, Z. Horita, Ultra-severe plastic deformation: evolution of microstructure, phase transformation and hardness in immiscible magnesium-based systems, Mater. Sci. Eng. A 701 (2017) 158–166.

DOI: 10.1016/j.msea.2017.06.076

Google Scholar

[31] J.K. Han, J.I. Jang, T.G. Langdon, M. Kawasaki, Bulk-state reactions and improving the mechanical properties of metals through high-pressure torsion, Mater. Trans. 60 (2019) 1131–1138.

DOI: 10.2320/matertrans.mf201908

Google Scholar

[32] K. Edalati, I. Taniguchi, R. Floriano, A. Ducati Luchessi, Glycine amino acid transformation under impacts by small solar system bodies, simulated by high-pressure torsion method, Sci. Rep. 12 (2022) 5677.

DOI: 10.1038/s41598-022-09735-3

Google Scholar

[33] K. Kvenvolden, J. Lawless, K. Pering, E. Peterson, J. Flores, C. Ponnamperuma, J.R. Kaplan, C. Moore, Evidence for extraterrestrial amino-acids and hydrocarbons in the Murchison meteorite. Nature 228 (1970) 923–926.

DOI: 10.1038/228923a0

Google Scholar

[34] C.M. O'D. Alexander, C.D. Cody, B.T. De Gregorio, L.R. Nittler, R.M. Stroud, The nature, origin and modification of insoluble organic matter in chondrites, the major source of Earth's C and N. Chem. Erde Gechem. 77 (2017) 227–256.

DOI: 10.1016/j.chemer.2017.01.007

Google Scholar

[35] E. Peterson, F. Horz, S. Chang, Modification of amino acids at shock pressures of 3.5 to 32 GPa. Geochim. Cosmochim. Acta 61 (1997) 3937–3950.

DOI: 10.1016/s0016-7037(97)00192-0

Google Scholar

[36] J.G. Blank, G.H. Miller, R.E. Winans, Experimental shock chemistry of aqueous amino acid solutions and the cometary delivery of prebiotic compounds, Origins Life Evol. Biosph. 31 (2001) 15–51.

Google Scholar

[37] Z. Martins, M.C. Price, N. Goldman, M.A. Sephton, M.J. Burchell, Shock synthesis of amino acids from impacting cometary and icy planet surface analogues, Nat. Geosci. 6 (2013) 1045–1049.

DOI: 10.1038/ngeo1930

Google Scholar

[38] D. Davis, Nasa Image and Video Library, ARC-1991-AC91-0193 (1991).

Google Scholar

[39] T.S. Duffy, R.F. Smith, Ultra-high pressure dynamic compression of geological materials. Front. Earth Sci. 7 (2019) 23.

Google Scholar

[40] P.W. Bridgman, Polymorphic transitions up to 50,000 kg/cm2 of several organic substances, Proc. Am. Acad. Arts Sci. 72 (1938) 227–268.

DOI: 10.2307/20023299

Google Scholar

[41] V.A. Zhorin, Y.V. Kissin, Y.V. Luizo, N.M. Fridman, N.S. Yenikolopyan, Structural changes in polyolefins due to the combination of high pressure and shear deformation, Polym. Sci. USSR 18 (1976) 3057–3061.

DOI: 10.1016/0032-3950(76)90416-0

Google Scholar

[42] K. Edalati, Metallurgical alchemy by ultra-severe plastic deformation via high-pressure torsion process, Mater. Trans. 60 (2019) 1221–1229.

DOI: 10.2320/matertrans.mf201914

Google Scholar

[43] K. Edalati, Y. Hashiguchi, P.H.R. Pereira, Z. Horita, T.G. Langdon, Effect of temperature rise on microstructural evolution during high-pressure torsion, Mater. Sci. Eng. A 714 (2018) 167–171.

DOI: 10.1016/j.msea.2017.12.095

Google Scholar

[44] R. Floriano, K. Edalati, K. Danielle Pereira, A. Ducati Luchessi, Titanium-protein nanocomposites as new biomaterials produced by high-pressure torsion, Sci. Re. 13 (2023) 470.

DOI: 10.1038/s41598-022-26716-8

Google Scholar

[45] Y. Umeda, N. Fukunaga, T. Sekine, Y. Furukawa, T. Kakegawa, T. Kobayashi, H. Nakazawa, Survivability and reactivity of glycine and alanine in early oceans: effects of meteorite impacts, J. Biol. Phys. 42 (2016) 177–198.

DOI: 10.1007/s10867-015-9400-5

Google Scholar

[46] N. Biver, D. Bockelée-Morvan, R. Moreno, J. Crovisier, P. Colom, D.C. Lis, A. Sandqvist, J. Boissier, D. Despois, S.N. Milam, Ethyl alcohol and sugar in comet C/2014 Q2 (Lovejoy). Sci. Adv. 1 (2015) e1500863.

DOI: 10.1126/sciadv.1500863

Google Scholar

[47] K. Hadraoui, H. Cottin, S.L. Ivanovski, P. Zapf, K. Altwegg, Y. Benilan, N. Biver, V. Della Corte, N. Fray, J. Lasue, S. Merouane, A. Rotundi, V. Zakharov, Distributed glycine in comet 67P/Churyumov-Gerasimenko, Astron. Astrophys. 630 (2019) A32.

DOI: 10.1051/0004-6361/201935018

Google Scholar