[1]
P.W. Bridgman, Effects of high shearing stress combined with high hydrostatic pressure, Phys. Rev. 48 (1935) 825–847.
DOI: 10.1103/physrev.48.825
Google Scholar
[2]
K. Edalati, Z. Horita, Scaling-up of high pressure torsion using ring shape, Mater. Trans. 50 (2009) 92–95.
DOI: 10.2320/matertrans.md200822
Google Scholar
[3]
A.P. Zhilyae, T.G. Langdon, Using high-pressure torsion for metal processing: fundamentals and applications, Prog. Mater. Sci. 53 (2008) 893–979.
DOI: 10.1016/j.pmatsci.2008.03.002
Google Scholar
[4]
R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, Y.T. Zhu, Producing bulk ultrafine-grained materials by severe plastic deformation, JOM 58(4) (2006) 33–39.
DOI: 10.1007/s11837-006-0213-7
Google Scholar
[5]
K. Edalati, Z. Horita, A review on high-pressure torsion (HPT) from 1935 to 1988, Mater. Sci. Eng. A 652 (2016) 325–352.
DOI: 10.1016/j.msea.2015.11.074
Google Scholar
[6]
K. Edalati, A. Bachmaier, V.A. Beloshenko, Y. Beygelzimer, V.D. Blank, W.J. Botta, K. Bryła, J. Čížek, S. Divinski, N.A. Enikeev, Y. Estrin, G. Faraji, R.B. Figueiredo, M. Fuji, T. Furuta, T. Grosdidier, J. Gubicza, A. Hohenwarter, Z. Horita, J. Huot, Y. Ikoma, M. Janeček, M. Kawasaki, P. Krǎl, S. Kuramoto, T.G. Langdon, D.R. Leiva, V.I. Levitas, A. Mazilkin, M. Mito, H. Miyamoto, T. Nishizaki, R. Pippan, V.V. Popov, E.N. Popova, G. Purcek, O. Renk, Á. Révész, X. Sauvage, V. Sklenicka, W. Skrotzki, B.B. Straumal, S. Suwas, L.S. Toth, N. Tsuji, R.Z. Valiev, G. Wilde, M.J. Zehetbauer, X. Zhu, Nanomaterials by severe plastic deformation: review of historical developments and recent advances, Mater. Res. Lett. 10 (2022) 163–256.
DOI: 10.1080/21663831.2022.2029779
Google Scholar
[7]
K. Edalati, Z. Horita, Y. Mine, High-pressure torsion of hafnium, Mater. Sci. Eng. A 527 (2010) 2136–2141.
DOI: 10.1016/j.msea.2009.11.060
Google Scholar
[8]
S. Lee, K. Edalati, Z. Horita, Microstructures and mechanical properties of pure V and Mo processed by high-pressure torsion, Mater. Trans. 51 (2010) 1072-1079.
DOI: 10.2320/matertrans.m2009375
Google Scholar
[9]
L. Chen, L. Ping, T. Ye, L. Lingfeng, X. Kemin, Z. Meng, Observations on the ductility and thermostability of tungsten processed from micropowder by improved high-pressure torsion, Rare Met. Mater. Eng. 45 (2016) 3089–3094.
DOI: 10.1016/s1875-5372(17)30059-0
Google Scholar
[10]
P. Edalati, R. Floriano, Y. Tang, A. Mohammadi, K. Danielle Pereira, A. Ducati Luchessi, K. Edalati, Ultrahigh hardness and biocompatibility of high-entropy alloy TiAlFeCoNi processed by high-pressure torsion, Mater. Sci. Eng. C 112 (2020) 110908.
DOI: 10.1016/j.msec.2020.110908
Google Scholar
[11]
P. Edalati, A. Mohammadi, M. Ketabchi, K. Edalati, Ultrahigh hardness in nanostructured dual-phase high-entropy alloy AlCrFeCoNiNb developed by high-pressure torsion, J. Alloys Compd. 884 (2021) 161101.
DOI: 10.1016/j.jallcom.2021.161101
Google Scholar
[12]
P. Edalati, A. Mohammadi, M. Ketabchi, K. Edalati, Microstructure and microhardness of dual-phase high-entropy alloy by high-pressure torsion: twins and stacking faults in FCC and dislocations in BCC, J. Alloys Compd. 894 (2022) 162413.
DOI: 10.1016/j.jallcom.2021.162413
Google Scholar
[13]
J.Y. Huang, Y.T. Zhu, X.Z. Liao, R.Z. Valiev, Amorphization of TiNi induced by high-pressure torsion, Phil. Mag. Lett. 84 (2004) 183–190.
DOI: 10.1080/09500830310001657353
Google Scholar
[14]
C. Gammer, C. Mangler, H.P. Karnthaler, C. Rentenberger, Growth of nanosized chemically ordered domains in intermetallic FeAl made nanocrystalline by severe plastic deformation, Scr. Mater. 65 (2011) 57–60.
DOI: 10.1016/j.scriptamat.2011.03.002
Google Scholar
[15]
K. Edalati, Y. Yokoyama, Z. Horita, High-pressure torsion of machining chips and bulk discs of amorphous Zr50Cu30Al10Ni10, Mater. Trans. 51 (2010) 23–26.
DOI: 10.2320/matertrans.mb200914
Google Scholar
[16]
Á. Révész, Z. Kovács, Severe plastic deformation of amorphous alloys, Mater. Trans. 60 (2019) 1283–1293.
DOI: 10.2320/matertrans.mf201917
Google Scholar
[17]
Y. Ikoma, K. Hayano, K. Edalati, K. Saito, Q. Guo, Z. Horita, Phase transformation and nanograin refinement of silicon by processing through high-pressure torsion, Appl. Phys. Lett. 101 (2012) 121908.
DOI: 10.1063/1.4754574
Google Scholar
[18]
V.D. Blank, M.Y. Popov, B.A. Kulnitskiy, The effect of severe plastic deformations on phase transitions and structure of solids, Mater. Trans. 60 (2019) 1500–1505.
DOI: 10.2320/matertrans.mf201942
Google Scholar
[19]
K. Edalati, Z. Horita, Correlations between hardness and atomic bond parameters of pure metals and semi-metals after processing by high-pressure torsion, Scr. Mater. 64 (2011) 161–164.
DOI: 10.1016/j.scriptamat.2010.09.034
Google Scholar
[20]
Y. Ikoma, Severe plastic deformation of semiconductor materials using high-pressure torsion, Mater. Trans. 60 (2019) 1168–1176.
DOI: 10.2320/matertrans.mf201907
Google Scholar
[21]
H. Razavi-Khosroshahi, K. Edalati, M. Arita, Z. Horita, M. Fuji, Plastic strain and grain size effect on high-pressure phase transformations in nanostructured TiO2 ceramics, Scr. Mater. 124 (2016) 59–62.
DOI: 10.1016/j.scriptamat.2016.06.022
Google Scholar
[22]
Q. Wang, K. Edalati, Y. Koganemaru, S. Nakamura, M. Watanabe, T. Ishihara, Z. Horita, Photocatalytic hydrogen generation on low-bandgap black zirconia (ZrO2) produced by high-pressure torsion, J. Mater. Chem. A 8 (2020) 3643–3650.
DOI: 10.1039/c9ta11839j
Google Scholar
[23]
K. Edalati, M. Arimura, Y. Ikoma, T. Daio, M. Miyata, D.J. Smith, Z. Horita, Plastic deformation of BaTiO3 ceramics by high-pressure torsion and changes in phase transformations, optical and dielectric properties, Mater. Res. Lett. 3 (2015) 216–221.
DOI: 10.1080/21663831.2015.1065454
Google Scholar
[24]
K. Edalati, Z. Horita, H. Fujiwara, K. Ameyama, Cold consolidation of ball-milled titanium powders using high-pressure torsion, Metall. Mater. Trans. A 41 (2010) 3308–3317.
DOI: 10.1007/s11661-010-0400-6
Google Scholar
[25]
A. Bachmaier, R. Pippan, High-pressure torsion deformation induced phase transformations and formations: new material combinations and advanced properties, Mater. Trans. 60 (2019) 1256–1269.
DOI: 10.2320/matertrans.mf201930
Google Scholar
[26]
V.I. Levitas, High-pressure phase transformations under severe plastic deformation by torsion in rotational anvils, Mater. Trans. 60 (2019) 1294–1301.
DOI: 10.2320/matertrans.mf201923
Google Scholar
[27]
A. Mazilkin, B. Straumal, A. Kilmametov, P. Straumal, B. Baretzky, Phase transformations induced by severe plastic deformation, Mater. Trans. 60 (2019) 1489–1499.
DOI: 10.2320/matertrans.mf201938
Google Scholar
[28]
A. Alhamidi, K. Edalati, Z. Horita, S. Hirosawa, K. Matsuda, D. Terada, Softening by severe plastic deformation and hardening by annealing of aluminum-zinc alloy: significance of elemental and spinodal decompositions, Mater. Sci. Eng. A 610 (2014) 17–27.
DOI: 10.1016/j.msea.2014.05.026
Google Scholar
[29]
K. Edalati, Z. Horita, R.Z. Valiev, Transition from poor ductility to room-temperature superplasticity in a nanostructured aluminum alloy, Sci. Rep. 8 (2018) 6740.
DOI: 10.1038/s41598-018-25140-1
Google Scholar
[30]
K. Edalati, R. Uehiro, K. Fujiwara, Y. Ikeda, H.W. Li, X. Sauvage, R.Z. Valiev, E. Akiba, I. Tanaka, Z. Horita, Ultra-severe plastic deformation: evolution of microstructure, phase transformation and hardness in immiscible magnesium-based systems, Mater. Sci. Eng. A 701 (2017) 158–166.
DOI: 10.1016/j.msea.2017.06.076
Google Scholar
[31]
J.K. Han, J.I. Jang, T.G. Langdon, M. Kawasaki, Bulk-state reactions and improving the mechanical properties of metals through high-pressure torsion, Mater. Trans. 60 (2019) 1131–1138.
DOI: 10.2320/matertrans.mf201908
Google Scholar
[32]
K. Edalati, I. Taniguchi, R. Floriano, A. Ducati Luchessi, Glycine amino acid transformation under impacts by small solar system bodies, simulated by high-pressure torsion method, Sci. Rep. 12 (2022) 5677.
DOI: 10.1038/s41598-022-09735-3
Google Scholar
[33]
K. Kvenvolden, J. Lawless, K. Pering, E. Peterson, J. Flores, C. Ponnamperuma, J.R. Kaplan, C. Moore, Evidence for extraterrestrial amino-acids and hydrocarbons in the Murchison meteorite. Nature 228 (1970) 923–926.
DOI: 10.1038/228923a0
Google Scholar
[34]
C.M. O'D. Alexander, C.D. Cody, B.T. De Gregorio, L.R. Nittler, R.M. Stroud, The nature, origin and modification of insoluble organic matter in chondrites, the major source of Earth's C and N. Chem. Erde Gechem. 77 (2017) 227–256.
DOI: 10.1016/j.chemer.2017.01.007
Google Scholar
[35]
E. Peterson, F. Horz, S. Chang, Modification of amino acids at shock pressures of 3.5 to 32 GPa. Geochim. Cosmochim. Acta 61 (1997) 3937–3950.
DOI: 10.1016/s0016-7037(97)00192-0
Google Scholar
[36]
J.G. Blank, G.H. Miller, R.E. Winans, Experimental shock chemistry of aqueous amino acid solutions and the cometary delivery of prebiotic compounds, Origins Life Evol. Biosph. 31 (2001) 15–51.
Google Scholar
[37]
Z. Martins, M.C. Price, N. Goldman, M.A. Sephton, M.J. Burchell, Shock synthesis of amino acids from impacting cometary and icy planet surface analogues, Nat. Geosci. 6 (2013) 1045–1049.
DOI: 10.1038/ngeo1930
Google Scholar
[38]
D. Davis, Nasa Image and Video Library, ARC-1991-AC91-0193 (1991).
Google Scholar
[39]
T.S. Duffy, R.F. Smith, Ultra-high pressure dynamic compression of geological materials. Front. Earth Sci. 7 (2019) 23.
Google Scholar
[40]
P.W. Bridgman, Polymorphic transitions up to 50,000 kg/cm2 of several organic substances, Proc. Am. Acad. Arts Sci. 72 (1938) 227–268.
DOI: 10.2307/20023299
Google Scholar
[41]
V.A. Zhorin, Y.V. Kissin, Y.V. Luizo, N.M. Fridman, N.S. Yenikolopyan, Structural changes in polyolefins due to the combination of high pressure and shear deformation, Polym. Sci. USSR 18 (1976) 3057–3061.
DOI: 10.1016/0032-3950(76)90416-0
Google Scholar
[42]
K. Edalati, Metallurgical alchemy by ultra-severe plastic deformation via high-pressure torsion process, Mater. Trans. 60 (2019) 1221–1229.
DOI: 10.2320/matertrans.mf201914
Google Scholar
[43]
K. Edalati, Y. Hashiguchi, P.H.R. Pereira, Z. Horita, T.G. Langdon, Effect of temperature rise on microstructural evolution during high-pressure torsion, Mater. Sci. Eng. A 714 (2018) 167–171.
DOI: 10.1016/j.msea.2017.12.095
Google Scholar
[44]
R. Floriano, K. Edalati, K. Danielle Pereira, A. Ducati Luchessi, Titanium-protein nanocomposites as new biomaterials produced by high-pressure torsion, Sci. Re. 13 (2023) 470.
DOI: 10.1038/s41598-022-26716-8
Google Scholar
[45]
Y. Umeda, N. Fukunaga, T. Sekine, Y. Furukawa, T. Kakegawa, T. Kobayashi, H. Nakazawa, Survivability and reactivity of glycine and alanine in early oceans: effects of meteorite impacts, J. Biol. Phys. 42 (2016) 177–198.
DOI: 10.1007/s10867-015-9400-5
Google Scholar
[46]
N. Biver, D. Bockelée-Morvan, R. Moreno, J. Crovisier, P. Colom, D.C. Lis, A. Sandqvist, J. Boissier, D. Despois, S.N. Milam, Ethyl alcohol and sugar in comet C/2014 Q2 (Lovejoy). Sci. Adv. 1 (2015) e1500863.
DOI: 10.1126/sciadv.1500863
Google Scholar
[47]
K. Hadraoui, H. Cottin, S.L. Ivanovski, P. Zapf, K. Altwegg, Y. Benilan, N. Biver, V. Della Corte, N. Fray, J. Lasue, S. Merouane, A. Rotundi, V. Zakharov, Distributed glycine in comet 67P/Churyumov-Gerasimenko, Astron. Astrophys. 630 (2019) A32.
DOI: 10.1051/0004-6361/201935018
Google Scholar