Conception of a Multi-Component Water System with Individually Adaptable Modules for Measuring Diverse Parameters and a Variability of the Purification Output Quality

Article Preview

Abstract:

This work deals with an adaptable water reactor design built from different modules as a basis for research. These modules are selected according to the application and are used for sensor related cleaning and supporting tasks. For example, to produce a specific water quality or for pharmaceutical applications. Sensor related modules are used to measure various parameters such as temperature, TOC, flow parameters and others. In addition to simple membrane filter modules, UV-C disinfection and experimental modules are integrated into the setup. Modules for pumping processes, for power supply such as solar, for control tasks and the connection systems of water and electricity between modules are also outlined. This system is described on the basis of scientific examples that use this system. In more detail the modules for temperature, TOC measurement, and UV-C disinfection as well as the supply and control modules are shown.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

65-71

Citation:

Online since:

December 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] https://de.wikipedia.org/wiki/Trinkwasser

Google Scholar

[2] https://www.wassertest-online.de/blog/schwermetalle-im-trinkwasser/

Google Scholar

[3] G. E. McDonnell: Antisepsis, Disinfection, and Sterilization: Types, Action, and Resistance. Blackwell Publishing, 2007, ISBN 978-1-55581-392-5

DOI: 10.1128/9781555816445

Google Scholar

[4] https://www.eppendorf.com/product-media/doc/de/59828/Eppendorf_Detection_Application -Note_279_BioPhotometer-D30_Detection-contamination-DNA-protein-samples-photometric-measurements.pdf [Internet retrieved: 20.09.2022 – 16:00]

Google Scholar

[5] https://www.watt24.com/ratgeber/uv-lampen-desinfektion-leicht-gemacht/ [Internet retrieved: 21.09.2022 – 17:00]

Google Scholar

[6] Moses Nelson Baker: The Quest for Pure Water: The History of Water Purification from The Earliest Records to The Twentieth Century. 2. Auflage. American Water Works Association, Denver 1981, ISBN 978-0-89867-247-3

Google Scholar

[7] https://www.infektionsschutz.de/infektionskrankheiten/erregerarten/bakterien/ [Internet retrieved: 01.03.2023 – 18:00]

Google Scholar

[8] https://www.wotech-technical-media.de/womag/onlineartikel/OA-2018/11-November18/26_11_Quecksilber.php [Internet retrieved: 16.03.2023 – 16:00]

Google Scholar

[9] https://www.ikts.fraunhofer.de/content/dam/ikts/downloads/jahresberichte/jb2014/51_Elektrochemische_Verfahren_f%C3%BCr_Wasserbehandlung_und_Rohstoffrecycling.pdf [Internet retrieved: 16.03.2023 – 17:00]

Google Scholar

[10] https://temperatur-profis.de/temperaturfuehler/temperatursensor-funktionsweise/

Google Scholar

[11] https://www.rechner-sensors.com/dokumentation/wissen/der-temperatursensor

Google Scholar

[12] https://www.test-wasser.de/elektrische-leitfaehigkeit-wasser [Internet Received 26.03.2023 14:00]

Google Scholar

[13] Kurt Marquardt u. a: Rein- und Reinstwasseraufbereitung. Expert-Verlag, (1994)

Google Scholar

[14] https://info.hannainst.de/parameter/leitfaehigkeit-erklaert [Internet Received 27.03.2023 14:00]

Google Scholar

[15] https://www.internetchemie.info/chemie-lexikon/t/tds-wert.php [Internet Received 17.04.2023 17:00]

Google Scholar

[16] Roger Schmid, SWAN Analytische Instrumente AG, Hinwil, Schweiz: Verfahren in der TOC-Messung, Pharm. Ind. 75, Nr. 11, 1840 – 1848 (2013)

Google Scholar

[17] https://de-academic.com/dic.nsf/dewiki/1106024#Anwendungens [Internet Received 17.04.2023 18:00]

Google Scholar

[18] https://home.uni-leipzig.de/energy/energie-grundlagen/16.html [Internet Received 18.04.2023 12:00]

Google Scholar

[19] Dirk Flottmann, Detlev Forst, Helmut Roßwag: Chemie für Ingenieure: Grundlagen und Praxisbeispiele. Springer, 2003, ISBN 3-540-06513-X, S. 225.

DOI: 10.1007/978-3-642-18545-8

Google Scholar

[20] W. Bermbach: Die Vorgänge im ruhenden Bleisammler. In: Die Akkumulatoren. Springer, Berlin / Heidelberg 1929, S. 65 ff.;

DOI: 10.1007/978-3-662-29115-3_4

Google Scholar

[21] http://fmh-studios.de/theorie/informationstechnik/i2c-bus/ [Internet Received 28.03.2023 19:00]

Google Scholar

[22] https://www.grund-wissen.de/elektronik/arduino/aufbau.html [Internet Received 29.03.2023 15:00]

Google Scholar

[23] Berger, Hartmann, Schmid: Additive Fertigungsverfahren – Rapid Prototyping, Rapid Tooling, Rapid Manufacturing. 1. Auflage. Verlag Europa-Lehrmittel, Haan-Gruiten 2013, ISBN 978-3-8085-5033-5.

DOI: 10.1007/978-3-446-43652-7_5

Google Scholar

[24] Andreas Gebhardt: Rapid Prototyping – Werkzeuge für die schnelle Produktentstehung. 2. Auflage. Hanser Verlag, München 2000, ISBN 3-446-21242-6.

Google Scholar

[25] M. Heinrich, A. Foitzik, Low Cost Easy-To-Use UV-C-diode Testing Device via Rapid Prototyping; Fachtagung Mikrosystemtechnik & Mikroelektronik (2022)

Google Scholar

[26] M. Heinrich, A. Foitzik, A conductivity-based, batch-optimized system for analyzing the total of carbon parameter in water, Fachtagung NWK 23 HS Harz

Google Scholar

[27] https://www.elektronik-kompendium.de/sites/kom/2405151.htm [Internet Received 26.04.2023 15:00]

Google Scholar