Data Analysis of Production Data for Continuous Casting of Aluminum Rolling Ingots

Article Preview

Abstract:

Optimizing the manufacturing process to increase the product quality is a major challenge most industry branches just like aluminum production have to face. To continuously improve the production quality, it is necessary to develop new methods to identify parameters which may influence the product quality. Influencing parameters can be found at various production steps. Production data is recorded by numerous sensors throughout the entire manufacturing process. The goal is to develop methods for analysing the sensor data from each step of the production process to effectively identify specific patterns that may indicate critical process parameters along the production chain. The work shows feature extraction methods to find characteristics in the sensor data that could affect the product-quality.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

95-101

Citation:

Online since:

December 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Lee, H.-A. Kao, S. Yang, Service innovation and smart analytics for industry 4.0 and big data environment, Procedia Cirp. 16 (2014), 3–8.

DOI: 10.1016/j.procir.2014.02.001

Google Scholar

[2] A.K. Vasudevan, R.D. Doherty, Aluminum Alloys-Contemporary Research and Applications: Contemporary Research and Applications, Elsevier (2012).

Google Scholar

[3] B. Prillhofer, H. Antrekowitsch, H. Bottcher, P. En-Right., Nonmetallic inclusions in the secondary aluminium industry for the production of aerospace alloys. In LIGHT METALS-WARRENDALE-PROCEEDINGS, TMS (2008), 603.

Google Scholar

[4] M.R. Berthold, C. Borgelt, F. Höppner, F. Klawonn, Guide to Intelligent Data Analysis: How to Intelligently Make Sense of Real Data, Springer London (2010)

DOI: 10.1007/978-3-030-45574-3

Google Scholar

[5] Information on https://rstudio-pubs-static.s3.amazonaws.com/223423_ 8ca6fccca1e44939be 3f85ecbfa9598f.html

Google Scholar

[6] D.P. Kroese, T. Brereton, T. Taimre, Z.I. Botev, Why the Monte Carlo method is so important today, WIREs Comput Stat. (2014), 386–392.

DOI: 10.1002/wics.1314

Google Scholar

[7] R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria (2022).

Google Scholar

[8] G. Walz, Lexikon der Mathematik, first ed., Spektrum Akademischer Verlag, Mannheim/ Heidelberg, 2000.

Google Scholar

[9] Information on https://www.spektrum.de/lexikon/physik/diskretisierung/3173.

Google Scholar

[10] T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning, Springer (2001)

Google Scholar

[11] M. Wand, KernSmooth: Functions for Kernel Smoothing Supporting Wand & Jones (1995), (2021) on https://CRAN.R-project.org/package=KernSmooth

Google Scholar

[12] M. p. Wand, M. C. Jones:,Kernel Smoothing, Chapman and Hall, London (1995)

Google Scholar

[13] W.W. Burchett, A.R. Ellis, S.W. Harrar, A. C. Bathke, Nonparametric Inference for Multivariate Data: The R Package npmv, Journal of Statistical Software (2017), 1-18

DOI: 10.18637/jss.v076.i04

Google Scholar

[14] L. Sachs, J. Hedderich, Angewandte Statistik: Methodensammlung mit R, 8 ed., Springer Spektrum, Berlin/ Heidelberg (2018)

Google Scholar

[15] H. Wickham, Elegant Graphics for Data Analysis, Springer-Verlag New York (2016) on https://ggplot2.tidyverse.org

Google Scholar