[1]
Ryzhov R.N., Kozhukhar V.A., Maksimov S.Yu. and Prilipko E.A., Application of external electromagnetic actions for improvement of mechanical properties of welds in underwater wet welding, Paton Welding Journal. 11 (2004) 49-51.
Google Scholar
[2]
N.V. Zaytseva, C. M. Zaharov, S. Yu. Maksimov, E.O. Prilipko, Underwater welding in an alternating magnetic field, Metallophysics and advanced technologies, 11 (2009) 1589-1596.
Google Scholar
[3]
Razmyshlyaev A.D. and Ageeva M.V., Influence of magnetic field on crystallization of welds in arc welding, Paton Welding Journal. 1 (2019) 25-27.
DOI: 10.15407/tpwj2019.01.05
Google Scholar
[4]
Ahieieva А. D., Rational using of the controlling longitudinal and transverse magnetic fields at arc welding and surfacing, IOP Conf. Series: Mater. Sci. and Eng. 582 (2019) 6.
DOI: 10.1088/1757-899x/582/1/012054
Google Scholar
[5]
Razmyshlyaev A.D., Ageeva M.V. and Lavrova E.V., Refinement of metal structure in arc surfacing under the effect of longitudinal magnetic field, Paton Welding Journal. 2 (2019)13-18.
DOI: 10.15407/tpwj2019.02.03
Google Scholar
[6]
Razmyshlyaev A.D. and Mironova M.V., Peculiarities of base metal penetration in arc surfacing in longitudinal magnetic field, Paton Welding Journal. 8 (2008) 18-21.
Google Scholar
[7]
Ryzhov R.N. and Kuznetsov V.D., External electromagnetic effects in the processes of arc welding and surfacing (Review), Paton Welding Journal. 10 (2006) 29-35.
Google Scholar
[8]
Ryzhov R.N. and Kuznetsov V.D., Choice of optimal parameters of external electromagnetic action in arc methods of welding, Paton Welding Journal. 6 (2005) 24-27.
Google Scholar
[9]
Hirsch P.B. Dislocation Distributions and Hardening Mechanisms in Metals, London, H.M.S.O., 1963.
Google Scholar
[10]
F. M. Kosevich, Dislocations in the theory of elasticity, Naukova dumka, Kiev 1978.
Google Scholar
[11]
L. N. Larikov, V. M. Falchenko, Effect of high-speed loading on mass transfer in iron, Effect of crystal structure defects on diffusion and mass transfer under pulsed action, Kiev, Institute of Metal Physics NASU (1980) 30-32.
Google Scholar
[12]
V. I. Alshits, V. L. Indenblom, Dislocation deceleration dynamics, Uspehi fizmat nauk, 115 (1975) 3-39.
Google Scholar
[13]
A.M. Koseviyach, Fundamentals of crystal lattice mechanics, M., "Nauka", 1972.
Google Scholar
[14]
V.V. Tonkiy, V. I. Zaytsev, B. P. Filatov, On the mechanism of formation of an ordered dislocation structure of metals, Ukrainian physical journal, 7 (1973) 1178-1181.
Google Scholar
[15]
L. N. Larikov, V. M. Falzhenko, D. S. Gertsriken, K. K. Khrenov, On the mechanism of the effect of a pulsed magnetic field on the mobility of atoms in iron and aluminum, DAN SSSR, 2 (1978) 312-314.
Google Scholar
[16]
D. S. Gertsriken, V. M. Kudinov, L. N. Larikov, V. M. Falzhenko, Effect of high-speed loading on mass transfer in iron, Kiev, Institute of Metal Physics NASU, 1980.
Google Scholar
[17]
L. N. Larikov, Healing defects in metals, Naukova dumka, Kiev, 1980.
Google Scholar
[18]
B.E. Paton, Selected Works, Institute of Electric Welding. E.O. Paton NAS of Ukraine, Kyiv, 2008.
DOI: 10.15407/dopovidi2017.06.036
Google Scholar
[19]
L.M. Lobanov, Science of materials, achievements, prospects,: Akademperiodika, Kyiv, 2018.
Google Scholar
[20]
Pozdnyakov V.D, Welding technologies for production and repair of metal structures from high-strength steels, Bulletin of the National Academy of Sciences of Ukraine. 1 (2017) 65-73.
Google Scholar
[21]
Yu. G. Gagen, T. A. Martynyuk, Influence of parameters of longitudinal magnetic field on the structure and mechanical properties of welded joints of oil and gas pipelines, Avtomaticheskaia Svarka 9 (1978) 37-41.
Google Scholar
[22]
O. V. Tozony, Mathematical models for calculating electric and magnetic fields, Naukova dumka, Kiev, 1964.
Google Scholar
[23]
V. F. Evdokimov, S. Yu. Maksimov, E. I. Petrushenko, E.O. Prilipko, E.A. Rybalkin, Three-dimensional integral model of welding current distribution during arc welding of a gap in a plate, Electronic simulation, 6 (2008) 3 – 18.
Google Scholar
[24]
L. Markashova, O. Berdnikova, A. Bernatskyi, V. Sydorets, O. Bushma, Crack Resistance of 14KhGN2MDAFB High-Strength Steel Joints Manufactured by Laser Welding, IOP Conference Series, Earth and Environmental Science. 224 (2019) 012013.
DOI: 10.1088/1755-1315/224/1/012013
Google Scholar
[25]
O. Berdnikova, V. Sydorets, T. Alekseienko, Structure and Properties of Laser-Welded Joints from High-Strength Steels, Applied Mechanics and Materials. 682 (2014) 240-245.
DOI: 10.4028/www.scientific.net/amm.682.240
Google Scholar
[26]
V.D. Poznyakov, L.I. Markashova, V.D. Shelyagin, S.L. Zhdanov, A.V. Bernats'kyi, O.M. Berdnikova, V.M. Sydorets', Cold Cracking Resistance of Butt Joints in High-Strength Steels with Different Welding Techniques, Strength of Materials, 51 (6) (2019) 843-851.
DOI: 10.1007/s11223-020-00132-7
Google Scholar