[1]
J. R. Davis Davis "Corrosion of Weldments" ASM International 2006.
Google Scholar
[2]
A K Lakshminarayanan, K Shanmugam, V Balasubramanian, Effect of Welding Processes on Tensile and Impact Properties, Hardness and Microstructure of AISI 409M Ferritic Stainless Joints Fabricated by Duplex Stainless Steel Filler Metal, Journal of iron and steel research, International, 2009, 16 (5) 66-72.
DOI: 10.1016/s1006-706x(10)60013-1
Google Scholar
[3]
J.L. Cavazos "Characterization of precipitates formed in a ferritic stainless steel stabilized with Zr and Ti additions" Materials Characterization, 56 (2006) 96-101.
DOI: 10.1016/j.matchar.2005.05.006
Google Scholar
[4]
A K Lakshminarayanan, K Shanmugam, V Balasubramanian, Effect of Autogenous Arc Welding Processes on Tensile and Impact Properties of Ferritic Stainless Steel Joints, Journal of iron and steel research, international, 2009, 16 (1): 62-68.
DOI: 10.1016/s1006-706x(09)60012-1
Google Scholar
[5]
B.W. Ahn, D.H. Choi, D.J. Kim, S.B. Jung. Microstructures and properties of friction stir welded 409L stainless steel using a Si3N4 tool. Materials Science and Engineering A 532 (2012) 476-479.
DOI: 10.1016/j.msea.2011.10.109
Google Scholar
[6]
H.H. Cho, H.N. Han, S.T. Hong, J.H. Park, Y.J. Kwon, S.H. Kim, R.J. Steel Microstructural analysis of friction stir welded ferritic stainless steel. Materials Science and Engineering A 528 (2011) 2889-2894.
DOI: 10.1016/j.msea.2010.12.061
Google Scholar
[7]
M. Burak Bilgin, C. Meran. The effect of tool rotational and traverse speed on friction stir weldability of AISI 430 ferritic stainless steels. Materials and Design 33 (2012) 376-383.
DOI: 10.1016/j.matdes.2011.04.013
Google Scholar
[8]
J. C. Villafuerte, E. Pardo, H. W. Kerr. The effect of alloy composition and welding conditions on columnar-equiaxed transitions in ferritic stainless steel gas-tungsten arc welds. Metallurgical Transactions A, Volume 21(1990), Issue 7, pp.2009-2019.
DOI: 10.1007/bf02647249
Google Scholar
[9]
J.C. Villafuerte, H.W. Kerr, S.A. David. Mechanisms of equiaxed grain formation in ferritic stainless steel gas tungsten arc welds. Materials Science and Engineering A194 (1995) 187-191.
DOI: 10.1016/0921-5093(94)09656-2
Google Scholar
[10]
T. Mohandas, G.M. Reddy, M. Naveed. A comparative evaluation of gas tungsten and shielded metal arc welds of ferritic stainless steel. Journal of Materials Processing Technology 94 (1999) 133-140.
DOI: 10.1016/s0924-0136(99)00092-8
Google Scholar
[11]
G. M. Reddy, T. Mohandas. Explorative studies on grain refinement of ferritic stainless steel welds. Journal of Materials Science Letters 20 (2001) 721-723.
Google Scholar
[12]
M.O.H. Amuda, S. Mridha, Comparative evaluation of grain refinement in AISI 430 FSS welds by elemental metal powder addition and cryogenic cooling, Materials and Design 35 (2012) 609-618.
DOI: 10.1016/j.matdes.2011.09.066
Google Scholar
[13]
M.O.H. Amuda, S. Mridha. Grain refinement and hardness distribution in cryogenically cooled ferritic stainless steel welds. Materials and Design 47 (2013) 365-371.
DOI: 10.1016/j.matdes.2012.12.008
Google Scholar
[14]
G. Mallaiah, A. Kumar, P.R. Reddy, G.M. Reddy, Influence of grain refining elements on mechanical properties of AISI 430 ferritic stainless steel weldments - Taguchi approach, Materials and Design 36 (2012) 443-450.
DOI: 10.1016/j.matdes.2011.11.063
Google Scholar
[15]
M. Gurram, K. Adepu, R.R. Pinninti, M.R. Gankidi, Effect of copper and aluminum addition on mechanical properties and corrosion behaviour of AISI 430 ferritic stainless steel gas tungsten arc welds. Journal of Materials Research and Technology, Volume 2, Issue 3(2013) 238-249.
DOI: 10.1016/j.jmrt.2013.02.009
Google Scholar
[16]
M.F. Benlamnouar, M. Hadji, R. Badji, N. Bensaid, T. Saadi, Y Laib dit Laksir, S. Senouci, Optimizations of TIG Welding Process Parameters for X70-304L Dissimilar Joint Using Taguchi Method. Solid State Phenomena, Volume 297(2019) 51-61.
DOI: 10.4028/www.scientific.net/ssp.297.51
Google Scholar
[17]
Tahar Saadi, Mohamed Farid Benlamnouar, Nabil Bensaid, A. Boutaghane, M A. Soualili, H. Hachemi, Optimization of Automatic TIG Welding Parameters of AISI 304L ASS Welds Using Response Surface Methodology, Defect and Diffusion Forum, Volume 406 (2021) 319-333.
DOI: 10.4028/www.scientific.net/ddf.406.319
Google Scholar
[18]
Arvinder Singh, Vanraj, Kant Suman, Suri N.M. Parameter optimization for tensile strength of spot weld for 316L stainless steel. International Journal of Scientific & Engineering Research, Volume 4, Issue 7(2013), 2443- 2446.
Google Scholar
[19]
M.A. Mohamed, Y.H. Manurung, M.N. Berhan, Model development for mechanical properties and weld quality class of friction stir welding using multi-objective Taguchi method and response surface methodology, Journal of Mechanical Science and Technology, Vol. 29, No. 6 (2015) 2323-2331.
DOI: 10.1007/s12206-015-0527-x
Google Scholar
[20]
Annual Book of ASTM Standards. Philadelphia, PA: American Society for Testing of Materials; 2004.
Google Scholar
[21]
L. Wang, Y. Chen, H. Li, Q. Kemao, Y. Gu, et C. Zhai, « Out-of-plane motion and non-perpendicular alignment compensation for 2D-DIC based on cross-shaped structured light », Optics and Lasers in Engineering 134 (2020) 106148.
DOI: 10.1016/j.optlaseng.2020.106148
Google Scholar
[22]
J. Shuai, J. Zhao, L. Lei, P. Zeng, X. Wu, et L. Sun, « Characterization of crack propagation of Incoloy 800H by the combination of DIC and XFEM », Nuclear Engineering and Design 364 (2020) 110683.
DOI: 10.1016/j.nucengdes.2020.110683
Google Scholar
[23]
P.K. Giridharan, N. Murugan, Optimization of pulsed GTA welding process parameters for the welding of AISI 304L stainless steel sheets, The International Journal of Advanced Manufacturing Technology 40 (2009) 478-489.
DOI: 10.1007/s00170-008-1373-0
Google Scholar
[24]
N. Bensaid, M. Hadji, R. Badji, M.F. Benlamnouar, T. Saadi, Y. Laib dit Laksir, S. Senouci. Microstructure and Mechanical Behavior of AISI 430 FSS Welds Produced with Different Elemental Metal Powder Addition. Solid State Phenomena 297 (2019) 195-203.
DOI: 10.4028/www.scientific.net/ssp.297.195
Google Scholar
[25]
M.A. Khattak et al. Failure investigation of welded 430 stainless steel plates for conveyor belts. Engineering Failure Analysis 116 (2020), 104754.
DOI: 10.1016/j.engfailanal.2020.104754
Google Scholar
[26]
D. Li et al., « Experimental study on fracture and fatigue crack propagation processes in concrete based on DIC technology », Engineering Fracture Mechanics 235(2020) 107166.
DOI: 10.1016/j.engfracmech.2020.107166
Google Scholar
[27]
J. He, D. Lei, et W. Xu, « In-situ measurement of nominal compressive elastic modulus of interfacial transition zone in concrete by SEM-DIC coupled method », Cement and Concrete Composites 114 (2020), p.103779.
DOI: 10.1016/j.cemconcomp.2020.103779
Google Scholar