Features of Microstructural Evolution and Corrosion Behavior of Ti6Al4V Titanium Alloy Fabricated from Elemental Powder Blends

Article Preview

Abstract:

Sintered Ti6Al4V titanium alloys prepared from TiH2/60Al40V powder blends under various technological conditions were studied. The microstructural evolution was investigated by X-ray diffraction, scanning electron microscopy, optical microscopy, and energy dispersive X-ray analysis. The corrosion resistance of sintered titanium alloy was evaluated by the static immersion test in 40 wt.% H2SO4 acid, according to ASTM standard G31-72(2004). Depending on powder metallurgy processing parameters (compaction pressure or sintering temperature), the Ti6Al4V alloy was obtained with various structural features (porosity and structural heterogeneity). It was shown that those structural features of sintered Ti6Al4V titanium alloy are a key microstructural factor that determines their corrosion resistance. For instance, an increase in porosity leads to enhanced corrosion resistance. Based on the current research, the optimal manufacturing regimes of powder metallurgy of Ti6Al4V titanium alloy ensure the achievement of characteristics sufficient for practical use in aggressive conditions of the chemical industry were obtained.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

29-35

Citation:

Online since:

February 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Alves de Souza, A. Robin, Influence of concentration and temperature on the corrosion behavior of titanium, titanium-20 and 40% tantalum alloys and tantalum in sulfuric acid solutions, Mater. Chem. Phys. 103 (2007) 351-360.

DOI: 10.1016/j.matchemphys.2007.02.026

Google Scholar

[2] S. Lavrys, I. Pohrelyuk, H. Veselivska, A. Skrebtsov, J. Kononenko, Y. Marchenko, Corrosion behavior of near-alpha titanium alloy fabricated by additive manufacturing, Mater. Corros. 73 (2022) 2063-2070.

DOI: 10.1002/maco.202213105

Google Scholar

[3] I.N. Andijani, S. Ahmad, A.U. Malik, Corrosion behavior of titanium metal in the presence of inhibited sulfuric acid at 50°C, Desalination. 129 (2000) 45-51.

DOI: 10.1016/S0011-9164(00)00050-3

Google Scholar

[4] M.A. Deyab, Corrosion inhibition of heat exchanger tubing material (titanium) in MSF desalination plants in acid cleaning solution using aromatic nitro compounds, Desalination. 439 (2018) 73-79.

DOI: 10.1016/j.desal.2018.04.005

Google Scholar

[5] A. Imani, E. Asselin, Fluoride induced corrosion of Ti-45Nb in sulfuric acid solutions, Corros. Sci. 181 (2021) 109232.

DOI: 10.1016/j.corsci.2020.109232

Google Scholar

[6] Z.B. Wang, H.X. Hu, Y.G. Zheng, W. Ke, Y.X. Qiao, Comparison of the corrosion behavior of pure titanium and its alloys in fluoride-containing sulfuric acid, Corros. Sci. 103 (2016) 50-65.

DOI: 10.1016/j.corsci.2015.11.003

Google Scholar

[7] O. Ivasishin, V. Moxson, Low-cost titanium hydride powder metallurgy, in: M. Qian, F.H. (Sam) Froes (Eds.), Titanium Powder Metallurgy, Butterworth-Heinemann, 2015, pp.117-148.

DOI: 10.1016/B978-0-12-800054-0.00008-3

Google Scholar

[8] G. Ma, T. Cheng, H. Jia, L. Yuan, O.M. Ivasishin, D.G. Savvakin, A novel method to fabricate high strength and ductility Ti-3Al-5Mo-4.5 V alloy based on TiH2 and pre-hydrogenated master alloy powders, Mater. Des. 227 (2023) 111791.

DOI: 10.1016/j.matdes.2023.111791

Google Scholar

[9] T. Chen, C. Yang, Z. Liu, H.W. Ma, L.M. Kang, Z. Wang, W.W. Zhang, D.D. Li, N. Li, Y.Y. Li, Revealing dehydrogenation effect and resultant densification mechanism during pressureless sintering of TiH2 powder, J. Alloys Compd. 873 (2021) 159792.

DOI: 10.1016/j.jallcom.2021.159792

Google Scholar

[10] J.H. Zhao, Z.L. Xie, T. Zhong, T. Sun, K. Fezzaa, Y. Cai, J.Y. Huang, S.N. Luo, Strain rate effects on the mechanical behavior of porous titanium with different pore sizes, Mater. Sci. Eng. A. 821 (2021) 141593.

DOI: 10.1016/j.msea.2021.141593

Google Scholar

[11] M. Cheng, Z. Lu, J. Wu, R. Guo, J. Qiao, L. Xu, R. Yang, Effect of thermal induced porosity on high-cycle fatigue and very high-cycle fatigue behaviors of hot-isostatic-pressed Ti-6Al-4V powder components, J. Mater. Sci. Technol. 98 (2022) 177-185.

DOI: 10.1016/j.jmst.2021.04.066

Google Scholar

[12] F. Cao, P. Kumar, M. Koopman, C. Lin, Z.Z. Fang, K.S. Ravi Chandran, Understanding competing fatigue mechanisms in powder metallurgy Ti–6Al–4V alloy: Role of crack initiation and duality of fatigue response, Mater. Sci. Eng. A. 630 (2015) 139-145.

DOI: 10.1016/j.msea.2015.02.028

Google Scholar

[13] I. Pohrelyuk, S.Lavrys, K. Shliakhetka, D. Savvakin, O. Tkachuk, Influence of manufacturing parameters on microstructure evolution and corrosion resistance of powder metallurgy titanium, JOM. 75 (2022), 816-824.

DOI: 10.1007/s11837-022-05627-z

Google Scholar

[14] F. Xie, X. He, S. Cao, M. Mei, X. Qu, Influence of pore characteristics on microstructure, mechanical properties and corrosion resistance of selective laser sintered porous Ti–Mo alloys for biomedical applications, Electrochim. Acta. 105 (2013) 121-129.

DOI: 10.1016/j.electacta.2013.04.105

Google Scholar

[15] K. Shliakhetka, I. Pohrelyuk, H. Chumalo, R. Proskurnyak, S. Lavrys, H. Veselivska, Influence of concentration of sulfuric and hydrochloric acids on corrosion resistance of porous titanium, J. Mater. Sci. 58 (2023) 15047–15060.

DOI: 10.1007/s10853-023-08964-9

Google Scholar

[16] D. Prando, A. Brenna, M.V. Diamanti, S. Beretta, F. Bolzoni, M. Ormellese, Ma.P. Pedeferri, Corrosion of titanium: Part 1: aggressive environments and main forms of degradation, J. Appl. Biomater. Funct. Mater. 15 (2017) e291-e302.

DOI: 10.5301/jabfm.5000387

Google Scholar

[17] L. Casanova, M. Gruarin, M.P. Pedeferri, M. Ormellese, A comparison between corrosion performances of titanium grade 2 and 7 in strong reducing acids, Mater. Corros. 72 (2021) 1506–1517.

DOI: 10.1002/maco.202112392

Google Scholar

[18] S. Dong, T. Cheng, X. Wang, D. Savvakin and O. Ivasishin, Effect of master alloys on synthesis and mechanical properties of Ti-6Al-4V alloy produced by elemental powder blends, JOM. 74 (2022) 4389-4401.

DOI: 10.1007/s11837-022-05386-x

Google Scholar

[19] A.C. Alves, I. Sendão, E. Ariza, F. Toptan, P. Ponthiaux, A. M.P. Pinto, Corrosion behaviour of porous Ti intended for biomedical applications, J. Porous Mater. 23 (2016) 1261-1268.

DOI: 10.1007/s10934-016-0185-0

Google Scholar

[20] M.E. Straumanis, P.C. Chen, The corrosion of titanium in acids – The rate of dissolution in sulfuric, hydrochloric, hydrobromic and hydroiodic acids. Corrosion. 7 (1951) 229-237.

DOI: 10.5006/0010-9312-7.7.229

Google Scholar