The Role of Cell Collapse Mechanism in Mechanical Performance of Aluminium Foam Fabricated by Melt Processing

Article Preview

Abstract:

The study presents mechanical performance metrics, especially, energy absorption, of aluminium foams fabricated by melt processing with CaCO3 blowing agent without Ca additive. Relatively ductile Al1Mg0.6Si alloy and high strength Al6Zn2.3Mg alloy comprising brittle eutectic domains were employed for the foams manufacture and then examined in conditions of uniaxial quasi-static compression. It was recognized that mechanical response of the foams and energy absorption is radically defined by the mechanism of cell collapse which, in turn, depends on the nature of structural constituents of the cell wall material. In particular, the presence of brittle eutectic domains in the cell wall material of foam based on Al6Zn2.3Mg alloy results in reducing the compressive strength and energy absorption compared to those of foam processed with Al1Mg0.6Si alloy, both deviate markedly from the theoretical predictions. In spite of this experimental verification of foams cell collapse is considered to be strongly required before their engineering application.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

21-28

Citation:

Online since:

February 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L.J. Gibson, M. F. Ashby, Cellular Solids: Structure and Properties, Cambridge: Cambridge University Press, 1997.

Google Scholar

[2] M. F. Ashby, A. G. Evans, N. A. Fleck et al., Metal Foams: A Design Guide, Butterworth Heinemann, Boston, USA, 2000.

Google Scholar

[3] J. Banhart, Manufacture, characterisation and application of cellular metals and metal foams, Progress in Materials Science, 46 (6) (2001) 559-632. doi.org/

DOI: 10.1016/S0079-6425(00)00002-5

Google Scholar

[4] V. Crupi, G. Epasto, E. Guglielmino, Impact response of aluminum foam sandwiches for light-weight ship structures, Metals, 1 (1) (2011) 98-112. doi.org/

DOI: 10.3390/met1010098

Google Scholar

[5] G. Palomba, G. Epasto, V. Crupi, Lightweight sandwich structures for marine applications: a review, Mechanics of Advanced Materials and Structures, 06.07.2021

DOI: 10.3233/PMST200051

Google Scholar

[6] T. J. Lu, A. Hess, M. F Ashby, Sound absorption in metallic foams, Journal of Applied Physics, 85 (1999) 7528-7539.

DOI: 10.1063/1.370550

Google Scholar

[7] A. Byakova, S. Gnyloskurenko, Y. Bezimyanniy, T. Nakamura, Closed-cell aluminum foam of improved sound absorption ability: manufacture and properties, Metals, 4 (3) (2014) 445-454. doi.org/

DOI: 10.3390/met4030445

Google Scholar

[8] Gama, B. A.; Bogetti, T. A.; Fink, B. K.; Yu, Chin-Jye; Claar, T. Dennis; Eifert, Harald H. Aluminum foam integral armor: a new dimension of armor design, Composite Structure, 52 (3 -4), (2001) 381–395. doi.org/

DOI: 10.1016/S0263-8223(01)00029-0

Google Scholar

[9] Schaeffler P, Berthold P. Alulight international Gmbh Ranshofen, Austria: processing and properties of Alulight® aluminum foams and sandwich panels for shipboard applications. National Shipbuilding Research Program Panel on Product Development and Materials Technology Biloxi, MS; 14 February 2008.

Google Scholar

[10] Z. Xu, H. Hao, Electromagnetic interference shielding effectiveness of aluminum foams with different porosity, Journal of Alloys and compounds, 617 (2014) 207-213. doi.org/

DOI: 10.1016/j.jallcom.2014.07.188

Google Scholar

[11] X. Zhu, S. Ai, X. Lu, X. Ling, L. Zhu, B. Liu, Thermal conductivity of closed-cell aluminum foam based on the 3D geometrical reconstruction, International Journal of Heat and Mass Transfer, 72 (2014) 242-249. doi.org/

DOI: 10.1016/j.ijheatmasstransfer.2014.01.006

Google Scholar

[12] J. Banhart, H.-W. Seeliger, Aluminium foam sandwich panels: manufacture, metallurgy and applications, Advanced Engineering Materials, 10 (9) (2008) 793-802. doi.org/

DOI: 10.1002/adem.200800091

Google Scholar

[13] B. A. Gama, T. A. Bogetti, B. K. Fink et al., Aluminum foam integral armor: a new dimension of armor design, Composite Structures, 52 (3-4) (2001) 381–395. doi.org/

DOI: 10.1016/S0263-8223(01)00029-0

Google Scholar

[14] P. Schaeffler, W. Rajner, D. Claar, T. Trendelenburg, H. Nishimura, Production, properties, and applications of Alulight® closed-cell aluminum foams, in Proceedings of the Fifth International Workshop on Advanced Manufacturing Technologies, London, Canada, May 2005.

Google Scholar

[15] J. Banhart, Light-metal foams-history of innovation and technological challenges, Advanced Engineering Materials, 15 (3) (2013) 82–111. doi.org/

DOI: 10.1002/adem.201200217

Google Scholar

[16] S. Akiyama, H. Ueno, K. Imagawa, A. Kitahara, S. Nagata, K. Morimoto, T. Nishikawa, M. Itoh, Foamed metal and method of producing same, European Patent 0 210 803, 1989 (1986).

Google Scholar

[17] S. Akiyama, H. Ueno, K. Imagawa, A. Kitahara, S. Nagata, K. Morimoto, T. Nishikawa, M. Itoh, Foamed metal and method of producing same, US Patent № 4713277, 1987.

Google Scholar

[18] S.V. Gnyloskurenko, T. Nakamura, A.V. Byakova Y.M. Podrezov, R. Ishikawa, M. Maeda. Development of lightweight Al alloy and technique, Canadian Metallurgical Quarterly, Vol.44 1 (2005) 7-12. doi.org/

DOI: 10.1179/cmq.2005.44.1.7

Google Scholar

[19] A. Byakova, A. Sirko, K. Mykhalenkov, Yu. Milman, S. Gnyloskurenko, T. Nakamura, Improvements in Stabilisation and Cellular Structure of Al based Foams with Novel Carbonate Foaming Agent, High Temperature Materials and Processes, Vol. 26 No. 4 (2007) 239-246. doi.org/

DOI: 10.1515/HTMP.2007.26.4.239

Google Scholar

[20] Koizumi T., Kido K., Kita K., Mikado K., Gnyloskurenko S., Nakamura T., Method of Preventing Shrinkage of Aluminum Foam Using Carbonates, Metals 2 (2011) 1-9

DOI: 10.3390/met2010001

Google Scholar

[21] V. Byakova, A. A. Vlasov, S. V. Gnyloskurenko, I. Kartuzov, Method for making the blocks of foamed aluminum/aluminum alloys, UA Patent no. 104367 (2014).

Google Scholar

[22] L. J. Gibson, Mechanical behavior of metallic foams, Annual Review in Material Science, 30 (1) (2000) 191-227. doi.org/

DOI: 10.1146/annurev.matsci.30.1.191

Google Scholar

[23] B. Kriszt, B. Foroughi, K. Faure, H. P. Degischer, Behaviour of aluminium foam under uniaxial compression, Materials Science and Technology, 16 (7-8) (2000) 792-796. doi.org/

DOI: 10.1179/026708300101508450

Google Scholar

[24] A.E. Markaki, T.W. Clyne, The effect of cell wall microstructure on the deformation and fracture of aluminum-based foams, Acta Materialia, 49 (2001) 1677-1686. doi.org/

DOI: 10.1016/S1359-6454(01)00072-6

Google Scholar