Effect of Individual Alloying Addition on the Microstructure and Creep Behavior of Squeeze Cast AZ91 Magnesium Alloy

Article Preview

Abstract:

The microstructure of AZ91 (Mg-Al) alloy is comprised of α-Mg and β-Mg17Al12 massive phase. The lower melting point associated with the β-Mg17Al12 phase results in poor creep resistance of the alloy. In the present study, the AZ91 alloy with the addition of calcium (Ca, 1wt%) and cerium (Ce, 1wt%) is cast, and their effect on the microstructure and creep behavior of AZ91 alloy have been investigated. Thermally stable phases such as Al2Ca and Al11Ce3 are introduced in the AZ91 alloy through the addition of Ca and Ce elements. Energy dispersive spectroscopy (EDS) and x-ray diffraction analysis confirmed the presence of these intermetallic phases in the microstructure. Tensile creep tests on the as-cast samples were performed at 175°C temperature under 50 MPa stress. The study shows that the creep resistance of AZ91 alloy is greatly improved with the presence of Al2Ca and Al11Ce3 intermetallic phases because of their better thermal stability than β-Mg17Al12.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

45-50

Citation:

Online since:

February 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. A. Fentahun and M. A. Savas: Int. J. Mater. Eng., vol. 8, no. 3 (2018), p.40–54.

Google Scholar

[2] B. L. Mordike and T. Ebert: Materials Science and Engineering A 302 (2001), p.37–45.

Google Scholar

[3] H. Patil, A. Jain, A. Marodkar, P. Kumar, and A. Ghosh: Material Science and Technology (2023).

DOI: 10.1080/02670836.2023.2186055

Google Scholar

[4] H. Patil, A. Marodkar, A. Ghosh, H. Borkar: Mater. Today Proc., no. xxxx, (2023).

DOI: 10.1016/j.matpr.2023.03.056

Google Scholar

[5] A. S. Marodkar, H. Patil, H. Borkar, and A. Behl: Int. J. Met., no. (2023).

DOI: 10.1007/s40962-022-00943-1

Google Scholar

[6] A. S. Marodkar, H. Patil, J. Chavhan, and H. Borkar: Mater. Today Proc., no. xxxx, (2023).

DOI: 10.1016/j.matpr.2023.03.053

Google Scholar

[7] D. Amberger, P. Eisenlohr, and M. Göken: Material Science and Engineering A vol. 511 (2009), p.398–402

Google Scholar

[8] N. Mo et al.: Mater. Des., vol. 155 (2018), p.422–442.

Google Scholar

[9] A. Al and F. Czerwinski: Mater. Sci. Eng. A, vol. 809 (2021), p.140973.

Google Scholar

[10] S. Zhu et al.: Metall. Mater. Trans. A, vol. 46, no. 8 (2015), p.3543–3554.

Google Scholar

[11] B. Nami, S. G. Shabestari, H. Razavi, S. Mirdamadi, and S. M. Miresmaeili: Mater. Sci. Eng. A, vol. 528, no. 3 (2011), p.1261–1267 .

Google Scholar

[12] J. Zhang, K. Liu, D. Fang, and X. Qiu: J Mater Sci, vol.44 (2009),p.2046–2054.

Google Scholar

[13] D. Zhao et al.: Mater. Sci. Eng. A, vol. 803 (2021), p.140508.

Google Scholar

[14] P.V. Yasnii et al.: Materials Science, vol. 44, No.2 (2008), pp.41-45.

Google Scholar