Quantifying the Human Perception: Development and Characterization of Textile-Based Capacitive Strain and Pressure Sensors

Article Preview

Abstract:

In the research field of smart textiles, one main goal concerns quantifying environmental forces acting on the wearer's body since textiles, acting as the boundary between the two, are an excellent way of integrating sensors. Integrating strain and pressure sensors into wearables promises a simple way of monitoring a person's posture and forces acting on their body. Sensors relying on a capacitive measuring principle are highly suitable for this, as they are less sensitive to changes in temperature than resistive or inductive types. In this paper, textile-based capacitive sensors are produced by braiding conductive yarns with and without an electrically insulating TPU sheath. The produced sensors are analyzed in cyclic strain and compression tests. Moreover, their behavior under changing temperatures is tested to prove their resilience against environmental changes. To extend their capabilities from an integral measurement to a localized assessment of the strain, time-domain-reflectometry (TDR) is employed. Finally, the sensors are integrated into a flexible actuated bending beam, and their adoption for soft robotics is discussed. Strain is tested cyclically, showing good long-term stability. Pressure sensitivity is measured in a static compression test under increasing force. TDR is used to localize strain in two discreet sections of the sensor. Although strain could not be quantified through TDR, characteristic points in the measured response signal indicating the position of the strain were identified. Textile-based capacitive sensors are suitable for strain up to 10 % and pressure up to 8 N. The determined gauge factors are satisfactory, with strain sensors inherently having a higher gauge factor than pressure sensors. Furthermore, they display good long-term stability and no adverse reaction to changes in temperature. TDR is proven to provide localization of strain in flexible sensors.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

11-20

Citation:

Online since:

March 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Shepherd, R. F.; Ilievski, F.; Choi, W.; Morin, S. A.; Stokes, A. A.; Mazzeo, A. D.; Chen, X.; Wang, M.; Whitesides, G. M.: Multigait soft robot. Proceedings of the National Academy of Sciences of the United States of America 108(2011)51, S. 20400–20403.

DOI: 10.1073/pnas.1116564108

Google Scholar

[2] Yang, S.; Lu, N.: Gauge factor and stretchability of silicon-on-polymer strain gauges. Sensors (Basel, Switzerland) 13(2013)7, S. 8577–8594.

DOI: 10.3390/s130708577

Google Scholar

[3] Pfeil, S.; Katzer, K.; Kanan, A.; Mersch, J.; Zimmermann, M.; Kaliske, M.; Gerlach, G.: A Biomimetic Fish Fin-Like Robot Based on Textile Reinforced Silicone. Micromachines 11(2020)3

DOI: 10.3390/mi11030298

Google Scholar

[4] Shih, B.; Christianson, C.; Gillespie, K.; Lee, S.; Mayeda, J.; Huo, Z.; Tolley, M. T.: Design Considerations for 3D Printed, Soft, Multimaterial Resistive Sensors for Soft Robotics. Frontiers in robotics and AI 6(2019), S. 30.

DOI: 10.3389/frobt.2019.00030

Google Scholar

[5] Stoppa, M.; Chiolerio, A.: Testing and evaluation of wearable electronic textiles and assessment thereof (Hrsg.): Performance Testing of Textiles. Elsevier, 2016. - ISBN 9780081005705, S. 65–101.

DOI: 10.1016/b978-0-08-100570-5.00005-0

Google Scholar

[6] Viry, L.; Levi, A.; Totaro, M.; Mondini, A.; Mattoli, V.; Mazzolai, B.; Beccai, L.: Flexible three-axial force sensor for soft and highly sensitive artificial touch. Advanced materials (Deerfield Beach, Fla.) 26(2014)17, S. 2659-64, 2614.

DOI: 10.1002/adma.201305064

Google Scholar

[7] Mersch, J.; Winger, H.; Nocke, A.; Cherif, C.; Gerlach, G.: Experimental Investigation and Modeling of the Dynamic Resistance Response of Carbon Particle‐Filled Polymers. Macromolecular Materials and Engineering 305(2020)10, S. 2000361.

DOI: 10.1002/mame.202000361

Google Scholar

[8] Huang, C.-T.; Shen, C.-L.; Tang, C.-F.; Chang, S.-H.: A wearable yarn-based piezo-resistive sensor. Sensors and Actuators A: Physical 141(2008)2, S. 396–403.

DOI: 10.1016/j.sna.2007.10.069

Google Scholar

[9] Quintero, A. Vásquez; Camara, M.; Mattana, G.; Gaschler, W.; Chabrecek, P.; Briand, D.; Rooij, N. F. de: Capacitive Strain Sensors Inkjet-printed on PET Fibers for Integration in Industrial Textile. Procedia Engineering 120(2015), S. 279–282.

DOI: 10.1016/j.proeng.2015.08.613

Google Scholar

[10] Calvert, P.; Duggal, D.; Patra, P.; Agrawal, A.; Sawhney, A.: Conducting Polymer and Conducting Composite Strain Sensors on Textiles. Molecular Crystals and Liquid Crystals 484(2008)1, S. 291/[657]-302/[668].

DOI: 10.1080/15421400801904690

Google Scholar

[11] Nilsson, E.; Lund, A.; Jonasson, C.; Johansson, C.; Hagström, B.: Poling and characterization of piezoelectric polymer fibers for use in textile sensors. Sensors and Actuators A: Physical 201(2013), S. 477–486.

DOI: 10.1016/j.sna.2013.08.011

Google Scholar

[12] Dargahi, J.; Kahrizi, M.; Purushotham Rao, N.; Sokhanvar, S.: Design and microfabrication of a hybrid piezoelectric‐capacitive tactile sensor. Sensor Review 26(2006)3, S. 186–192.

DOI: 10.1108/02602280610675465

Google Scholar

[13] Hofmann, P.; Walch, A.; Arnold-Keifer, S.; Selvarayan, S. Kumar; Gresser, G. T.: Utilization of the textile reinforcements of fiber reinforced plastics as sensor for condition monitoring. Composites Part A: Applied Science and Manufacturing 126(2019), S. 105603.

DOI: 10.1016/j.compositesa.2019.105603

Google Scholar

[14] Gries,T.: Elastische Textilien, Frankfurt am Main: Dt. Fachverl., 2005. -ISBN 3-87150-852-7.

Google Scholar

[15] Mersch, J.; Cuaran, C. A. Gomez; Vasilev, A.; Nocke, A.; Cherif, C.; Gerlach, G.: Stretchable and Compliant Textile Strain Sensors. IEEE Sensors Journal 21(2021)22, S. 25632–25640.

DOI: 10.1109/jsen.2021.3115973

Google Scholar

[16] Cataldo, A.; Benedetto, E. de; Cannazza, G.: Advances in Reflectometric Sensing for Industrial Applications. Synthesis Lectures on Emerging Engineering Technologies 2(2016)1, S. 1–96.

DOI: 10.2200/s00691ed1v01y201512eet002

Google Scholar

[17] Monitoring deformation in rock and soil with TDR sensor cables. 2003.

Google Scholar

[18] Lin, M. W.; Abatan, A. O.; Zhou, Y.: High-sensitivity electrical TDR distributed strain sensor. In: Smart Structures and Materials 2000: Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, Newport Beach, CA, Monday 6 March 2000, S. 463.

DOI: 10.1117/12.388137

Google Scholar

[19] O'Connor, K. M.; Murphy, E. W.: TDR monitoring as a component of subsidence risk assessment over abandoned mines. International Journal of Rock Mechanics and Mining Sciences 34(1997)3-4, S. 230.e1-230.e15.

DOI: 10.1016/s1365-1609(97)00134-2

Google Scholar

[20] Aimone-Martin, C. T.; Francke, J. L.: Time domain reflectometry (TDR): A comparison of field data to laboratory shear tests. International Journal of Rock Mechanics and Mining Sciences 34(1997)3-4, S. 84.e1-84.e15.

DOI: 10.1016/s1365-1609(97)00093-2

Google Scholar

[21] Dowding, C. H.; O'Connor, K. M.: Comparison of TDR and Inclinometers for Slope Monitoring: American Society of Civil Engineers, 2012.

Google Scholar

[22] Lin, M. W.; Thaduri, J.; Abatan, A. O.: Development of an electrical time domain reflectometry (ETDR) distributed strain sensor. Measurement Science and Technology 16(2005)7, S. 1495–1505.

DOI: 10.1088/0957-0233/16/7/012

Google Scholar

[23] Marotta Mapa, L.; Fernandes Golin, A.; Cavalcante Costa, C.; Bianchi, R. Fernando: The use of complex impedance spectroscopy measurements for improving strain sensor performance. Sensors and Actuators A: Physical 293(2019), S. 101–107.

DOI: 10.1016/j.sna.2019.02.001

Google Scholar

[24] Xu, D.; Tairych, A.; Anderson, I. A.: Localised strain sensing of dielectric elastomers in a stretchable soft-touch musical keyboard. In: Electroactive Polymer Actuators and Devices (EAPAD) 2015, San Diego, California, United States, Sunday 8 March 2015, S. 943025.

DOI: 10.1117/12.2084770

Google Scholar