Weft-Knitted Strain Sensors for Motion Capture

Article Preview

Abstract:

Motion capture, especially of the knee angle, is an important component for situational triggering of functional electrical stimulation (FES). One major disadvantage of commercial FES devices is their bulky design that prevents unobtrusive wearing in everyday life and limits the patient’s free choice of appearance. This paper presents an alternative approach of sensors for motion capture in form of textile-based strain sensors. These can be integrated in a FES system in form of functional leggings, which make the FES system suitable for an unobtrusive daily use. Textile sensors, especially knitted sensors have already proven to be very promising to detect tensile strain. In particular, weft-knitted strain sensors, which can be integrated directly into the clothing during the knitting process, have the potential to detect the knee angle and therefore derive the gait phase due to the bending of the limbs without disturbing the wearer unnecessarily. Different designs of the weft-knitted strain sensor and their influence on the measurement behaviour of the sensor have been investigated. The weft-knitted strain sensor can be directly integrated in the knee area of the functional leggings to be used as a soft trigger to initiate electrical impulses for FES.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-10

Citation:

Online since:

March 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Miller, L.; Mattison, P.; Paul, L.; Wood, L.: The effects of transcutaneous electrical nerve stimulation (TENS) on spasticity in multiple sclerosis. Multiple sclerosis (Houndmills, Basingstoke, England) 13(2007)4, pp.527-533

DOI: 10.1177/1352458506071509

Google Scholar

[2] Gorman, P. H.: An update on functional electrical stimulation after spinal cord injury. Neurorehabilitation and neural repair 14(2000)4, pp.251-263. https://doi.org/10.1177/ 154596830001400402

DOI: 10.1177/154596830001400402

Google Scholar

[3] Creasey, G. H.; Ho, C. H.; Triolo, R. J.; Gater, D. R.; DiMarco, A. F.; Bogie, K. M.; Keith, M. W.: Clinical applications of electrical stimulation after spinal cord injury. The journal of spinal cord medicine 27(2004)4, pp.365-375

DOI: 10.1080/10790268.2004.11753774

Google Scholar

[4] Hausdorf, J.; Ring, H.: THE EFFECT OF THE NESS L300 NEUROPROSTHESIS ON GAIT STABILITY AND SYMMETRY. Journal of Neurologic Physical Therapy 30(2006)4, S. 198 f

DOI: 10.1097/01.NPT.0000281266.34830.4b

Google Scholar

[5] Bioness Inc., NC 27703, United States: Improved Mobility. Made Easier. https://www.l300go.com, (12 November 2022)

Google Scholar

[6] HELLER MEDIZINTECHNIK GmbH & Co. KG: Weak foot dorsi flexion – foot drop system innoSTEP-WL provides mobility. https://www.heller-medizintechnik.de/produkte/innostep_wl/?lang=EN, (12 November 2022)

Google Scholar

[7] Pro Walk Rehabilitationshilfen und Sanitätsbedarf GmbH: The WalkAide®—System. Myo-Orthetic Technology for the Treatment of Centrally Caused Foot Lift Weakness. https://www.prowalk.de/produkte/walkaide/, (20 November 2022)

Google Scholar

[8] Jansen, K. M. B.: Performance Evaluation of Knitted and Stitched Textile Strain Sensors. Sensors (Basel, Switzerland) 20(2020)24

DOI: 10.3390/s20247236

Google Scholar

[9] Molinaro, N.; Massaroni, C.; Lo Presti, D., et al.: Wearable textile based on silver plated knitted sensor for respiratory rate monitoring. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference 2018(2018), pp.2865-2868

DOI: 10.1109/EMBC.2018.8512958

Google Scholar

[10] Tangsirinaruenart, O.; Stylios, G.: A Novel Textile Stitch-Based Strain Sensor for Wearable End Users. Materials (Basel, Switzerland) 12(2019)9

DOI: 10.3390/ma12091469

Google Scholar

[11] Dunne, L. E.; Gioverto, G.; Coughlin, J.; Bibeau, K.: Machine-Stitched E-Textile Stretch Sensors. Ames: (2013)

DOI: 10.31274/itaa_proceedings-180814-886

Google Scholar

[12] Park, S. Y.; Lee, J.-H.: Machine Embroidered Sensors for Limb Joint Movement-Monitoring Smart Clothing. Sensors (Basel, Switzerland) 21(2021)3

DOI: 10.3390/s21030949

Google Scholar

[13] Martínez-Estrada, M.; Gil, I.; Fernández-García, R.: An Alternative Method to Develop Embroidery Textile Strain Sensors. Textiles 1(2021)3, S. 504-512

DOI: 10.3390/textiles1030026

Google Scholar

[14] Zhao, K.; Niu, W.; Zhang, S.: Highly stretchable, breathable and negative resistance variation textile strain sensor with excellent mechanical stability for wearable electronics. J Mater Sci 55(2020)6, S. 2439-2453

DOI: 10.1007/s10853-019-04189-x

Google Scholar

[15] Euler, L.; Guo, L.; Persson, N.-K.: Textile Electrodes: Influence of Knitting Construction and Pressure on the Contact Impedance. Sensors (Basel, Switzerland) 21(2021)5

DOI: 10.3390/s21051578

Google Scholar

[16] Watson, A.; Sun, M.; Pendyal, S.; Zhou, G.: TracKnee: Knee angle measurement using stretchable conductive fabric sensors. Smart Health 15(2020), S. 100092 f

DOI: 10.1016/j.smhl.2019.100092

Google Scholar

[17] Götz-Neumann, K.: Gehen verstehen – Ganganalyse in der Physiotherapie. 4. Auflage, Stuttgart: Thieme, 2016. – ISBN 9783132401549

DOI: 10.1055/b-003-127005

Google Scholar