[1]
R.B. Seymour, G. B. Kauffman, Piezoelectric Polymers - Direct Converters of Work to Electricity, J. Chem. Educ. 67 (9) (1990) 763-765.
DOI: 10.1021/ed067p763
Google Scholar
[2]
C. Chang, V.H. Tran, J. Wang, Y.K. Fuh, L. Lin, Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency, Nano letters 10 (2) (2010) 726-731.
DOI: 10.1021/nl9040719
Google Scholar
[3]
T.S. Natarajan, S.B. Eshwaran, K.W. Stöckelhuber, S. Wießner, P. Potschke, G. Heinrich, A. Das, Strong strain sensing performance of natural rubber nanocomposites. ACS Appl. Mater. Interfaces. 9 (2017) 4860-4872.
DOI: 10.1021/acsami.6b13074
Google Scholar
[4]
A. Krainoi, K. Boonkerd, Novel hybrid natural rubber nanocomposites with carbon nanotube and cellulose nanofiber for strain-sensitive sensor, Ind. Crops Prod. 187 (2022) 115455.
DOI: 10.1016/j.indcrop.2022.115455
Google Scholar
[5]
J. Li, J. Xu, X. Liu, T. Zhang, S. Lei, L. Jiang, J. Ou-Yang, X. Yang, B. Zhu, A novel CNTs array-PDMS composite with anisotropic thermal conductivity for optoacoustic transducer applications, Compos. B: Eng. 196 (2020) 108073.
DOI: 10.1016/j.compositesb.2020.108073
Google Scholar
[6]
A. Krainoi, C. Kummerlöwe, Y. Nakaramontri, N. Vennemann, S. Pichaiyut, S. Wisunthorn, C. Nakason, Influence of critical carbon nanotube loading on mechanical and electrical properties of epoxidized natural rubber nanocomposites, Polym. Test. 66 (2018) 122-136.
DOI: 10.1016/j.polymertesting.2018.01.003
Google Scholar
[7]
Y. Nakaramontri, C. Nakason, C. Kummerlöwe, N. Vennemann, Influence of modified natural rubber on properties of natural rubber-carbon nanotube composites, Rubber Chem. Technol. 89 (2015) 199-218.
DOI: 10.5254/rct.14.85949
Google Scholar
[8]
S. Salaeh, P. Kao-ian, Conductive epoxidized natural rubber nanocomposite with mechanical and electrical performance boosted by hybrid network structures, Polym. Test. 108 (2022) 107493.
DOI: 10.1016/j.polymertesting.2022.107493
Google Scholar
[9]
Y. Nakaramontri, C. Nakason, C. Kummerlöwe, N. Vennemann, Enhancement of electrical conductivity and filler dispersion of carbon nanotube filled natural rubber composites by latex mixing and in situ silanization, Rubber Chem. Technol. 89 (2016) 272-291.
DOI: 10.5254/rct.15.84848
Google Scholar
[10]
C. Kummerlöwe, N. Vennemann, S. Pieper, A. Siebert, Y. Nakaramontri, Preparation and properties of carbon-nanotube composites with natural rubber and epoxidized natural rubber, Polimery. 59 (2014) 811-818.
DOI: 10.14314/polimery.2014.811
Google Scholar
[11]
A. Krainoi, K. Boonkerd, Mechanical/electrical properties and strain sensibility of epoxidized natural rubber nanocomposite filled with carbon nanotube: Effect of sodium alginate as a surfactant on latex technology process, EXPRESS Polym. Lett. 17 (8) (2023) 850-866.
DOI: 10.3144/expresspolymlett.2023.63
Google Scholar
[12]
E. Ozdemir, D.R. Arenas, N.L. Kelly, J.V. Hana, B.V. Rijswijk, V. Degirmenci, T. McNally, Ethylene methyl acrylate copolymer (EMA) assisted dispersion of few-layer graphene nanoplatelets (GNP) in poly(ethylene terephthalate) (PET), Polymer. 205 (2020) 122836.
DOI: 10.1016/j.polymer.2020.122836
Google Scholar
[13]
S. Schopp, R. Thomann, K. Ratzsch, S. Kerling, V. Altstädt, R. Mülhaupt, Functionalized Graphene, and Carbon Materials as Components of Styrene-Butadiene Rubber Nanocomposites Prepared by Aqueous Dispersion Blending, Macromol. Mater. Eng. 299 (2014) 319-329.
DOI: 10.1002/mame.201300127
Google Scholar
[14]
J. Joseph, A. Sharma, B. Sahoo, J. Paul, A.M. Sidpara, PVA/ MLG/ MWCNT hybrid composites for X band EMI shielding-Study of mechanical, electrical, thermal and tribological properties, Mater. Today Commun. 23 (2020) 100941.
DOI: 10.1016/j.mtcomm.2020.100941
Google Scholar
[15]
Tony V. Varghese, H. Ajith Kumar, S. Anitha, S. Ratheesh, R.S. Rajeev, V. Lakshmana Rao, Reinforcement of acrylonitrile butadiene rubber using pristine few layer graphene and its hybrid fillers, Carbon. 61 (2013) 476-486.
DOI: 10.1016/j.carbon.2013.04.104
Google Scholar