[1]
Froes FH, Eylon D, Bomberger HB. Titanium technology: present status and future trends. Titan Dev Assoc (1985) 191-201.
Google Scholar
[2]
Boyer RR. New titanium applications on the Boeing 777 aeroplane. Jom. (1992) 44 -52.
Google Scholar
[3]
Schutz RW, Watkins HB. Recent developments in titanium alloy application in the energy industry. Mater Sci Eng A. (1998) 243-256.
Google Scholar
[4]
Sarma B, Ravi Chandran KS. Recent advances in surface hardening of titanium. Jom. (2011) 85–92.
DOI: 10.1007/s11837-011-0035-0
Google Scholar
[5]
Hutchings I, Shipway P. Tribology: friction and wear of engineering materials. Butterworth-heinemann; (2017) 210-223.
Google Scholar
[6]
Baazi T, Knystautas EJ, Fiset M. Abrasive wear of nitrogen-implanted boron-coated Ti-6Al-4V and temperature effect on microhardness and sliding friction coefficient. Appl Surf Sci. (1993) 64-133.
DOI: 10.1016/0169-4332(93)90274-f
Google Scholar
[7]
Rie K-T, Menthe E, Matthews A, Legg K, Chin J. Plasma surface engineering of metals. MRS Bull. (1996) 46–51.
DOI: 10.1557/s0883769400035715
Google Scholar
[8]
Xu X, Yu Y, Huang H. Mechanisms of abrasive wear in the grinding of titanium (TC4) and nickel (K417) alloys. Wear. (2003) 1255-1421.
DOI: 10.1016/s0043-1648(03)00163-7
Google Scholar
[9]
Inagaki I, Takeuchi T, Shirai Y, Ariyasu N. Application and features of titanium for the aerospace industry. Nippon Steel Sumitomo Met Tech Rep. (2014) 106.
Google Scholar
[10]
Łępicka M, Grądzka-Dahlke M, Pieniak D, Pasierbiewicz K, Kryńska K, Niewczas A. Tribological performance of titanium nitride coatings: A comparative study on TiN-coated stainless steel and titanium alloy. Wear. (2019) 68–80.
DOI: 10.1016/j.wear.2019.01.029
Google Scholar
[11]
Wilson AD, Leyland A, Matthews A. A comparative study of the influence of plasma treatments, PVD coatings and ion implantation on the tribological performance of Ti–6Al–4V. Surf coatings Technol. (1999) 70–80.
DOI: 10.1016/s0257-8972(99)00024-9
Google Scholar
[12]
Khaled M, Yilbas BS, Shirokoff J. Electrochemical study of laser nitrided and PVD TiN coated Ti–6Al–4V alloy: the observation of selective dissolution. Surf Coatings Technol. (2001) 46–54.
DOI: 10.1016/s0257-8972(01)01326-3
Google Scholar
[13]
Elhelbawy nahla gamal el din emam, Abd El-Hatery A, Ahmed M. Comparison of Oxygen Plasma Treatment and Sandblasting of Titanium Implant-Abutment Surface on Bond Strength and Surface Topography. Vol. 31, The International Journal of Oral & Maxillofacial Implants. (2016) 555–562.
DOI: 10.11607/jomi.4355
Google Scholar
[14]
Fukumoto S, Tsubakino H, Inoue S, Liu L, Terasawa MT, Mitamura T. Surface modification of titanium by nitrogen ion implantation. Mater Sci Eng A. (1999) 9–15.
DOI: 10.1016/s0921-5093(98)01166-6
Google Scholar
[15]
Chen A, Blanchard J, Han SW, Conrad JR, Dodd RA, Fetherston P, et al. A Study of nitrogen ion-implanted ti-6ai-4v Eli by plasma source ion implantation at high temperature. J Mater Eng Perform. (1992) 845.
DOI: 10.1007/bf02658269
Google Scholar
[16]
Roliński E. Surface properties of plasma-nitrided titanium alloys. Mater Sci Eng A. (1989) 37–44.
Google Scholar
[17]
Galliano F, Galvanetto E, Mischler S, Landolt D. Tribocorrosion behavior of plasma nitrided Ti–6Al–4V alloy in neutral NaCl solution. Surf Coatings Technol. (2001) 121–31.
DOI: 10.1016/s0257-8972(01)01309-3
Google Scholar
[18]
Raveh A. Mechanisms of rf plasma nitriding of Ti-6Al-4V alloy. Mater Sci Eng A. (1993) 155-167.
DOI: 10.1016/0921-5093(93)90349-j
Google Scholar
[19]
Metin E, Inal OT. Kinetics of layer growth and multiphase diffusion in ion-nitrided titanium. Metall Trans A. (1989) 20–32.
DOI: 10.1007/bf02663213
Google Scholar
[20]
Ignatiev M, Kovalev E, Melekhin I, Smurov IY, Sturlese S. Investigation of the hardening of a titanium alloy by laser nitriding. Wear. (1993) 166-233.
DOI: 10.1016/0043-1648(93)90266-o
Google Scholar
[21]
Xu J, Lane CD, Ou J, Cockcroft SL, Maijer DM, Akhtar A, et al. Diffusion of nitrogen in solid titanium at elevated temperature and the influence on the microstructure. J Mater Res Technol [Internet]. (2021) 12–37.
DOI: 10.1016/j.jmrt.2021.02.073
Google Scholar
[22]
Wang G, Wan Y, Wang T, Zhanqiang L. Corrosion Behavior of Titanium Implant with Different Surface Morphologies. Procedia Manuf. (2017) 31–70.
Google Scholar
[23]
Guan J, Jiang X, Xiang Q, Yang F, Liu J. Corrosion and tribocorrosion behaviour of titanium surfaces designed by electromagnetic induction nitriding for biomedical applications. Surf Coatings Technol. (2021) 409.
DOI: 10.1016/j.surfcoat.2021.126844
Google Scholar
[24]
Kamat AM, Copley SM, Todd JA. A two-step laser-sustained plasma nitriding process for deep-case hardening of commercially pure titanium. Surf Coatings Technol. (2017) 82–95.
DOI: 10.1016/j.surfcoat.2017.01.033
Google Scholar
[25]
Çaha I, Alves AC, Affonço LJ, Lisboa-Filho PN, da Silva JHD, Rocha LA, et al. Corrosion and tribocorrosion behaviour of titanium nitride thin films grown on titanium under different deposition times. Surf Coatings Technol. (2019) 78–88.
DOI: 10.1016/j.surfcoat.2019.06.073
Google Scholar
[26]
Burdovitsin VA, Golosov DA, Oks EM, Tyunkov A V, Yushkov YG, Zolotukhin DB, et al. Electron beam nitriding of titanium in medium vacuum. Surf Coatings Technol. (2019) 358-368.
DOI: 10.1016/j.surfcoat.2018.11.081
Google Scholar
[27]
Zhecheva A, Malinov S, Sha W. Surface gas nitriding of Ti-6Al-4V and Ti-6Al-2Sn-4Zr-2Mo-0.08 Si alloys. Int J Mater Res. (2022) 19–24.
DOI: 10.3139/146.030019
Google Scholar
[28]
Mohammadi M, Akbari A, Warchomicka F, Pichon L. Depth profiling characterization of the nitride layers on gas nitrided commercially pure titanium. Mater Charact. (2021) 181-202.
DOI: 10.1016/j.matchar.2021.111453
Google Scholar
[29]
Wen K, Zhang C, Gao Y. Influence of gas pressure on the low-temperature plasma nitriding of surface-nanocrystallined TC4 titanium alloy. Surf Coatings Technol. (2022) 436-455.
DOI: 10.1016/j.surfcoat.2022.128327
Google Scholar
[30]
Guo J, Shi Y, Li C, Zhang G. Investigation of nitrogen ionization state and its effect on the nitride layer during fiber laser gas nitriding of Ti-6Al-4V alloy. Surf Coatings Technol [Internet]. (2021) 418-427.
DOI: 10.1016/j.surfcoat.2021.127254
Google Scholar
[31]
Datta S, Das M, Balla VK, Bodhak S, Murugesan VK. Mechanical, wear, corrosion and biological properties of arc deposited titanium nitride coatings. Surf Coatings Technol. (2018) 214-244.
DOI: 10.1016/j.surfcoat.2018.03.019
Google Scholar
[32]
Xu S, Cao Y, Duan B, Liu H, Wang J, Si C. Enhanced strength and sliding wear properties of gas nitrided Ti-6Al-4V alloy by ultrasonic shot peening pretreatment. Surf Coatings Technol [Internet]. 2023;458:129325.
DOI: 10.1016/j.surfcoat.2023.129325
Google Scholar
[33]
Jiang X, Dai Y, Xiang Q, Liu J, Yang F, Zhang D. Microstructure and wear behaviour of inductive nitriding layer in Ti–25Nb–3Zr–2Sn–3Mo alloys. Surf Coatings Technol. (2021) 427-443.
DOI: 10.1016/j.surfcoat.2021.127835
Google Scholar
[34]
Kaisar N, Huang Y-T, Jou S, Kuo H-F, Huang B-R, Chen C-C, et al. Surface-enhanced Raman scattering substrates of flat and wrinkly titanium nitride thin films by sputter deposition. Surf Coatings Technol. (2018) 337-434.
DOI: 10.1016/j.surfcoat.2018.01.048
Google Scholar
[35]
Ohtsu N, Endo R, Takeda S, Miura K, Kobayashi K. An open-atmosphere nitriding process for titanium using a watt-level pulsed Nd: YAG laser. Surf Coatings Technol. (2022) 438-447.
DOI: 10.1016/j.surfcoat.2022.128362
Google Scholar
[36]
Liu J, Wang X, Hu Y, Luo L, Jiang C, Liu F, et al. Effect of hydrogen on microstructure and mechanical properties of plasma-nitrided pure titanium by cathodic cage plasma nitriding. Surf Coatings Technol. (2023) 456-476.
DOI: 10.1016/j.surfcoat.2023.129231
Google Scholar
[37]
Tyunkov A V, Golosov DA, Zolotukhin DB, Nikonenko A V, Oks EM, Yushkov YG, et al. Nitriding of titanium in electron beam excited plasma in a medium vacuum. Surf Coatings Technol. (2020) 383-412.
DOI: 10.1016/j.surfcoat.2019.125241
Google Scholar
[38]
Deepak JR, Joy N, Krishnamoorthy A, Jaswanth CP, Harish G. Gas nitriding of CP grade – 2 commercially pure titanium and Ti6Al4V grade – 5 titanium alloy. Mater Today Proc. (2021) 44–50.
DOI: 10.1016/j.matpr.2020.11.586
Google Scholar
[39]
Zeng C, Wen H, Zhang B, Sprunger PT, Guo SM. Diffusion of oxygen and nitrogen into titanium under laser irradiation in air. Appl Surf Sci. (2020) 505-525.
DOI: 10.1016/j.apsusc.2019.144578
Google Scholar
[40]
Yetim AF, Kovacı H, Uzun Y, Tekdir H, Çelik A. A comprehensive study on the fatigue properties of duplex surface treated Ti6Al4V by plasma nitriding and DLC coating. Surf Coatings Technol. (2023) 458-472.
DOI: 10.1016/j.surfcoat.2023.129367
Google Scholar
[41]
Chan C-W, Quinn J, Hussain I, Carson L, Smith GC, Lee S. A promising laser nitriding method for the design of next-generation orthopaedic implants: cytotoxicity and antibacterial performance of titanium nitride (TiN) wear nano-particles, and enhanced wear properties of laser-nitrided Ti6Al4V surfaces. Surf Coatings Technol. (2021) 405-414.
DOI: 10.1016/j.surfcoat.2020.126714
Google Scholar