[1]
Matias Jaskari, Sumit Ghosh, Ilkka Miettunen, Pentti Karjalainen, and Antti Järvenpää. Tensile properties and deformation of AISI 316l additively manufactured with various energy densities. Materials, 14(19):5809, oct 2021.
DOI: 10.3390/ma14195809
Google Scholar
[2]
K. Kempen, L. Thijs, J. Van Humbeeck, and J.-P. Kruth. Mechanical properties of AlSi10mg produced by selective laser melting. Physics Procedia, 39:439-446, 2012.
DOI: 10.1016/j.phpro.2012.10.059
Google Scholar
[3]
Lianfeng Wang, Xiaohui Jiang, Miaoxian Guo, Xiaogang Zhu, and Biao Yan. Characterisation of structural properties for AlSi10mg alloys fabricated by selective laser melting. Materials Science and Technology, 33(18):2274-2282, nov 2017.
DOI: 10.1080/02670836.2017.1398513
Google Scholar
[4]
Krystian Zyguła, Brian A. Nosek, Hubert Pasiowiec, and Norbert Szysiak. Mechanical properties and microstructure of alsi10mg alloy obtained by casting and slm technique. In World Scientific News, 2018.
Google Scholar
[5]
I. Rosenthal, R. Shneck, and A. Stern. Heat treatment effect on the mechanical properties and fracture mechanism in AlSi10mg fabricated by additive manufacturing selective laser melting process. Materials Science and Engineering: A, 729:310-322, jun 2018.
DOI: 10.1016/j.msea.2018.05.074
Google Scholar
[6]
Tobias Maconachie, Martin Leary, Jianjun Zhang, Alexander Medvedev, Avik Sarker, Dong Ruan, Guoxing Lu, Omar Faruque, and Milan Brandt. Effect of build orientation on the quasi-static and dynamic response of SLM AlSi10mg. Materials Science and Engineering: A, 788:139445, jun 2020.
DOI: 10.1016/j.msea.2020.139445
Google Scholar
[7]
Guian Qian, Zhimo Jian, Yujia Qian, Xiangnan Pan, Xianfeng Ma, and Youshi Hong. Veryhigh-cycle fatigue behavior of AlSi10mg manufactured by selective laser melting: Effect of build orientation and mean stress. International Journal of Fatigue, 138:105696, sep 2020.
DOI: 10.1016/j.ijfatigue.2020.105696
Google Scholar
[8]
Z.W. Xu, Q. Wang, X.S. Wang, C.H. Tan, M.H. Guo, and P.B. Gao. High cycle fatigue performance of AlSi10mg alloy produced by selective laser melting. Mechanics of Materials, 148:103499, sep 2020.
DOI: 10.1016/j.mechmat.2020.103499
Google Scholar
[9]
Haoxiu Chen, Sagar Patel, Mihaela Vlasea, and Yu Zou. Enhanced tensile ductility of an additively manufactured AlSi10mg alloy by reducing the density of melt pool boundaries. Scripta Materialia, 221:114954, dec 2022.
DOI: 10.1016/j.scriptamat.2022.114954
Google Scholar
[10]
Paolo Ferro, Alberto Fabrizi, Filippo Berto, Gianpaolo Savio, Roberto Meneghello, and Stefano Rosso. Defects as a root cause of fatigue weakening of additively manufactured AlSi10mg components. Theoretical and Applied Fracture Mechanics, 108:102611, aug 2020.
DOI: 10.1016/j.tafmec.2020.102611
Google Scholar
[11]
Julius Noel Domfang Ngnekou, Julien Nicolai, Yves Nadot, Gilbert Henaff, and Lionel Ridosz. Influence of as-built surface and heat treatment on the fatigue resistance of additively layer manufacturing (ALM) AlSi10mg alloy. MATEC Web of Conferences, 165:02004, 2018.
DOI: 10.1051/matecconf/201816502004
Google Scholar
[12]
Changchun Zhang, Haihong Zhu, Hailong Liao, Yong Cheng, Zhiheng Hu, and Xiaoyan Zeng. Effect of heat treatments on fatigue property of selective laser melting AlSi10mg. International Journal of Fatigue, 116:513-522, nov 2018.
DOI: 10.1016/j.ijfatigue.2018.07.016
Google Scholar
[13]
Ming Tang and P. Chris Pistorius. Oxides, porosity and fatigue performance of AlSi10mg parts produced by selective laser melting. International Journal of Fatigue, 94:192-201, jan 2017.
DOI: 10.1016/j.ijfatigue.2016.06.002
Google Scholar