[1]
W. Koshibae, Theory of thermopower: effect of spin and orbital, Oxide thermoelectrics 58 (2002) 45-58.
Google Scholar
[2]
W. Koshibae, K. Tsutsui, S. Maekawa, Thermopower in cobalt oxides, Phys. Rev. B 62 (2000) 6869-6872.
DOI: 10.1103/physrevb.62.6869
Google Scholar
[3]
R. Heikes, R. Miller, R. Mazelsky, Magnetic and electrical anomalies in LaCoO3, Physica 30 (1964) 1600-1608.
DOI: 10.1016/0031-8914(64)90182-x
Google Scholar
[4]
G. H. Jonker, Magnetic and Semiconducting Properties of Perovskites Containing Manganese and Cobalt, J. Appl. Phys. 37 (1966) 1424-1430.
DOI: 10.1063/1.1708498
Google Scholar
[5]
K. Asai, O. Yokokura, M. Suzuki, T. Naka, T. Matsumoto, H. Takahashi, N. Môri, K. Kohn, Pressure Dependence of the 100 K Spin-State Transition in LaCoO3, J. Phys. Soc. Jpn. 66 (1997) 967-970.
DOI: 10.1143/jpsj.66.967
Google Scholar
[6]
K. Asai, A. Yoneda, O. Yokokura, J. M. Tranquada, G. Shirane, K. Kohn, Two Spin-State Transitions in LaCoO3, J. Phys. Soc. Jpn. 67 (1998) 290-296.
DOI: 10.1143/jpsj.67.290
Google Scholar
[7]
S. Singh, S. K. Pandey, Understanding the thermoelectric properties of LaCoO3 compound, Philos. Mag. 97 (2017) 451-463.
Google Scholar
[8]
A.S. Panfilov, G.E. Grechnev, I.P. Zhuravleva, A.A. Lyogenkaya, V.A. Pashchenko, B.N. Savenko, D. Novoselov, D. Prabhakaran, I. O. Troyanchuk, Pressure effect on magnetic susceptibility of LaCoO3, Low Temp. Phys. 44 (2018) 328–333.
DOI: 10.1063/1.5030456
Google Scholar
[9]
P. T. Long, D. N. Petrov, J. Ćwik, N. Dang, V. Dongquoc, Short-range magnetic order in La1-xBaxCoO3 cobaltites, Curr. App.l Phys. 18 (2018) 1248-1254.
DOI: 10.1016/j.cap.2018.07.001
Google Scholar
[10]
P. T. Long, T. Manh, T. Ho, V. Dongquoc, P. Zhang, S. Yu, Magnetocaloric effect in La1-xSrxCoO3 undergoing a second-order phase transition, Ceram. Int. 44 (2018) 15542-15549.
DOI: 10.1016/j.ceramint.2018.05.216
Google Scholar
[11]
R. Robert, M. Aguirre, P. Hug, A. Reller, A. Weidenkaff, High-temperature thermoelectric properties of Ln(Co, Ni)O3 (Ln = La, Pr, Nd, Sm, Gd and Dy) compounds, Acta Mater. 55 (2007) 4965-4972.
DOI: 10.1016/j.actamat.2007.05.020
Google Scholar
[12]
M. Unikoth, G. Varghese, K. Shijina and H. Neelamkodan, Thermoelectric Nanostructured Perovskite Materials, Recent Advances in Multifunctional Perovskite Materials, 2022.
DOI: 10.5772/intechopen.106614
Google Scholar
[13]
X. Wen, J. Ji, Z. Song, Z. Li, Performance prediction of the concentrated hybrid power/thermal system incorporating thermoelectric generators, Appl. Therm. Eng. 212 (2022) 118594.
DOI: 10.1016/j.applthermaleng.2022.118594
Google Scholar
[14]
F. Tohidi, S. G. Holagh and A. Chitsaz, Thermoelectric Generators: A comprehensive review of characteristics and applications, Appl. Therm. Eng. 201 (2022)117793.
DOI: 10.1016/j.applthermaleng.2021.117793
Google Scholar
[15]
B. Akarsu and M. S. Genç, Optimization of electricity and hydrogen production with hybrid renewable energy systems, Fuel 324 (2022) 124465.
DOI: 10.1016/j.fuel.2022.124465
Google Scholar
[16]
R. Hassan, B. K. Das and M. Hasan, Integrated off-grid hybrid renewable energy system optimization based on economic, environmental, and social indicators for sustainable development, Energy 250 (2022) 123823.
DOI: 10.1016/j.energy.2022.123823
Google Scholar
[17]
Y. Kirim, H. Sadikoglu, M. Melikoglu, Technical and economic analysis of biogas and solar photovoltaic (PV) hybrid renewable energy system for dairy cattle barns, Renew. Energ. 188 (2022) 873-889.
DOI: 10.1016/j.renene.2022.02.082
Google Scholar
[18]
T. Ni, J. Si, X. Gong, K. Zhang, M. Pan, Thermodynamic and economic analysis of a novel cascade waste heat recovery system for solid oxide fuel cell, Energ. Convers. Manage. 259 (2022) 115562.
DOI: 10.1016/j.enconman.2022.115562
Google Scholar
[19]
R. Hu, X. Liu, X. Zhang, L. Yang, Analysis of energy, economy, and carbon emission of nested cascade refrigeration cycle with heat recovery system, Int. J. Refrig. 136 (2022) 94-102.
DOI: 10.1016/j.ijrefrig.2022.01.016
Google Scholar
[20]
J. Seo, C. Kim, K. Park, Fabrication and thermoelectric properties of Sr1−xSixMnO3−δ, Powder Technol. 278 (2015) 11-16.
DOI: 10.1016/j.powtec.2015.02.035
Google Scholar
[21]
Y. Wang, F. Li, L. Xu, Y. Sui, X. Wang, W. Su, X. Liu, Large Thermal Conductivity Reduction Induced by La/O Vacancies in the Thermoelectric LaCoO3 System, Inorg. Chem. 50 (2011) 4412–4416.
DOI: 10.1021/ic200178x
Google Scholar
[22]
Y. Wang, H. Jin Fan, Improved Thermoelectric Properties of La1-xSrxCoO3 Nanowires, J. Phys. Chem. C 114 (2010) 13947–13953.
Google Scholar
[23]
Y. Kobayashi, S. Murata, K. Asai, J. Tranquada, G. Shirane, K. Kohn, Magnetic and transport properties of LaCo1-xNixO3-Comparison with La1-xSrxCoO3, J. Phys. Soc. Jpn. 68 (1999) 1011-1017.
Google Scholar
[24]
K. Muta, Y. Kobayashi, K. Asai, Magnetic, Electronic Transport, and Calorimetric Investigations of La1-xCaxCoO3 in Comparison with La1-xSrxCoO3, J. Phys. Soc. Jpn. 71 (2002) 2784-2791.
Google Scholar
[25]
H. Masuda, T. Fujita, T. Miyashita, M. Soda, Y. Yasui, Y. Kobayashi, M. Sato, Transport and Magnetic Properties of R1-xAxCoO3 (R = La, Pr and Nd; A = Ba, Sr and Ca), J. Phys. Soc. Jpn. 72 (2003) 873-878.
DOI: 10.1143/jpsj.72.873
Google Scholar
[26]
F. Li and J.-F. Li, Effect of Ni substitution on electrical and thermoelectric properties of LaCoO3 ceramics, Ceram. Int. 37 (2011)105–110.
DOI: 10.1016/j.ceramint.2010.08.024
Google Scholar
[27]
H. Kozuka, K. Ohbayashi, K. Koumoto, LaCo1−xNixO3 with Improved Electrical Conductivity, Inorg. Chem. 51 (2012) 9259−9264.
DOI: 10.1021/ic301386s
Google Scholar
[28]
A. Kumar, K. Kumari, B. Jayachandran, D. Sivaprahasam, A. D. Thakur, Thermoelectric properties of (1-x)LaCoO3.xLa0.7Sr0.3MnO3 composite, J. Alloy. Compd. 749 (2018) 1092-1097.
DOI: 10.1016/j.jallcom.2018.03.347
Google Scholar
[29]
G. Thornton, B. C. Tofield A. W. Hewat, A neutron diffraction study of LaCoO3 in the temperature range 4.2 < T < 1248 K, J. Solid State Chem. 61 (1986) 301-307.
DOI: 10.1016/0022-4596(86)90035-6
Google Scholar
[30]
S. Muraleedharan, N. Davis, R. Althaf, A. Singh, A. M. Ashok, Exploring the thermoelectric behavior of intrinsic and defect induced LaCoO3 with selected alkaline earth metals, J. Alloy. Compd. 857 (2021) 157507.
DOI: 10.1016/j.jallcom.2020.157507
Google Scholar
[31]
R. Robert, L. Bocher, B. Sipos, M. Döbeli, A. Weidenkaff, Ni-doped cobaltates as potential materials for high temperature solar thermoelectric converters, Prog Solid State Ch. 35 (2007) 447-455.
DOI: 10.1016/j.progsolidstchem.2007.01.020
Google Scholar
[32]
L. Fu and J.-F. Li, Preparation and Thermoelectric Properties of LaCoO3 Ceramics, Key Eng. Mat. 434-435 (2010) 404-408.
Google Scholar
[33]
A. Kumar, D. Sivaprahasam, A. D. Thakur, Improved thermoelectric properties in (1-x) LaCoO3/(x) La0.7Sr0.3CoO3 composite, Mater. Chem. Phys. 269 (2021) 124750.
DOI: 10.1016/j.matchemphys.2021.124750
Google Scholar
[34]
U. Deepika Shanubhogue, A. Pal, A. Rao, S. Chattopadhyay, A. M. Ashok, N. Davis, Tuning optical and thermoelectric properties of LaCoO3: Partial substitution of La by isovalent Gd, J. Alloy. Compd. 941 (2023) 168987.
DOI: 10.1016/j.jallcom.2023.168987
Google Scholar
[35]
P. M. Chaikin and G. Beni, Thermopower in the correlated hopping regime, Phys. Rev. B 13 (1976) 647-651.
DOI: 10.1103/physrevb.13.647
Google Scholar
[36]
A. Mineshige, M. Kobune, S. Fujii, Z. Ogumi, M. Inaba , K. Kikuchi, Metal-Insulator Transition and Crystal Structure of La1-xSrxCoO3 as Functions of Sr-Content, Temperature, and Oxygen Partial Pressure, J. Solid State Chem. 142 (1999) 374-381.
DOI: 10.1006/jssc.1998.8051
Google Scholar
[37]
A. Maignan, D. Flahaut, S. Hébert, Sign change of the thermoelectric power in LaCoO3, Eur. Phys. J. B 39 (2004) 145-148.
DOI: 10.1140/epjb/e2004-00179-8
Google Scholar