Effect of Ni-Doping on Seebeck Coefficient of LaCoO3 System

Article Preview

Abstract:

The aim of this study is discussing the results achieved on undoped and Ni-doped bulk LaCoO3 samples synthesized by solid-state reaction. The crystal structures of the samples were analyzed by x – ray diffraction (XRD) and Rietveld refinement of the XRD patterns was used to test the quality of the samples, the results of this procedure confirmed a single phase of LaCo1-xNixO3 for (x=0 and 0.05) with rhombohedral crystal structure (space group :). The main interest in this class of materials is the possibility of improving the values of Seebeck coefficient and electrical resistivity through chemical doping. The Seebeck coefficient and electrical resistivity were investigated from room temperature (RT) to 450 K, near RT the LaCoO3 system showed a large negative Seebeck coefficient, but it changed to positive value with increasing temperature while the LaCo0.95Ni0.05O3 composition showed a positive Seebeck coefficient throughout all the temperature range. Hence, within this study the Ni substitution led to decrease the electrical resistivity of the samples to one order of magnitude as a result of the partial substitution of Co3+ in LaCoO3 by Ni2+. LaCoO3 was chosen for this thermoelectric test because cobalt oxides have extensive applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

217-224

Citation:

Online since:

May 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Koshibae, Theory of thermopower: effect of spin and orbital, Oxide thermoelectrics 58 (2002) 45-58.

Google Scholar

[2] W. Koshibae, K. Tsutsui, S. Maekawa, Thermopower in cobalt oxides, Phys. Rev. B 62 (2000) 6869-6872.

DOI: 10.1103/physrevb.62.6869

Google Scholar

[3] R. Heikes, R. Miller, R. Mazelsky, Magnetic and electrical anomalies in LaCoO3, Physica 30 (1964) 1600-1608.

DOI: 10.1016/0031-8914(64)90182-x

Google Scholar

[4] G. H. Jonker, Magnetic and Semiconducting Properties of Perovskites Containing Manganese and Cobalt, J. Appl. Phys. 37 (1966) 1424-1430.

DOI: 10.1063/1.1708498

Google Scholar

[5] K. Asai, O. Yokokura, M. Suzuki, T. Naka, T. Matsumoto, H. Takahashi, N. Môri, K. Kohn, Pressure Dependence of the 100 K Spin-State Transition in LaCoO3, J. Phys. Soc. Jpn. 66 (1997) 967-970.

DOI: 10.1143/jpsj.66.967

Google Scholar

[6] K. Asai, A. Yoneda, O. Yokokura, J. M. Tranquada, G. Shirane, K. Kohn, Two Spin-State Transitions in LaCoO3, J. Phys. Soc. Jpn. 67 (1998) 290-296.

DOI: 10.1143/jpsj.67.290

Google Scholar

[7] S. Singh, S. K. Pandey, Understanding the thermoelectric properties of LaCoO3 compound, Philos. Mag. 97 (2017) 451-463.

Google Scholar

[8] A.S. Panfilov, G.E. Grechnev, I.P. Zhuravleva, A.A. Lyogenkaya, V.A. Pashchenko, B.N. Savenko, D. Novoselov, D. Prabhakaran, I. O. Troyanchuk, Pressure effect on magnetic susceptibility of LaCoO3, Low Temp. Phys. 44 (2018) 328–333.

DOI: 10.1063/1.5030456

Google Scholar

[9] P. T. Long, D. N. Petrov, J. Ćwik, N. Dang, V. Dongquoc, Short-range magnetic order in La1-xBaxCoO3 cobaltites, Curr. App.l Phys. 18 (2018) 1248-1254.

DOI: 10.1016/j.cap.2018.07.001

Google Scholar

[10] P. T. Long, T. Manh, T. Ho, V. Dongquoc, P. Zhang, S. Yu, Magnetocaloric effect in La1-xSrxCoO3 undergoing a second-order phase transition, Ceram. Int. 44 (2018) 15542-15549.

DOI: 10.1016/j.ceramint.2018.05.216

Google Scholar

[11] R. Robert, M. Aguirre, P. Hug, A. Reller, A. Weidenkaff, High-temperature thermoelectric properties of Ln(Co, Ni)O3 (Ln = La, Pr, Nd, Sm, Gd and Dy) compounds, Acta Mater. 55 (2007) 4965-4972.

DOI: 10.1016/j.actamat.2007.05.020

Google Scholar

[12] M. Unikoth, G. Varghese, K. Shijina and H. Neelamkodan, Thermoelectric Nanostructured Perovskite Materials, Recent Advances in Multifunctional Perovskite Materials, 2022.

DOI: 10.5772/intechopen.106614

Google Scholar

[13] X. Wen, J. Ji, Z. Song, Z. Li, Performance prediction of the concentrated hybrid power/thermal system incorporating thermoelectric generators, Appl. Therm. Eng. 212 (2022) 118594.

DOI: 10.1016/j.applthermaleng.2022.118594

Google Scholar

[14] F. Tohidi, S. G. Holagh and A. Chitsaz, Thermoelectric Generators: A comprehensive review of characteristics and applications, Appl. Therm. Eng. 201 (2022)117793.

DOI: 10.1016/j.applthermaleng.2021.117793

Google Scholar

[15] B. Akarsu and M. S. Genç, Optimization of electricity and hydrogen production with hybrid renewable energy systems, Fuel 324 (2022) 124465.

DOI: 10.1016/j.fuel.2022.124465

Google Scholar

[16] R. Hassan, B. K. Das and M. Hasan, Integrated off-grid hybrid renewable energy system optimization based on economic, environmental, and social indicators for sustainable development, Energy 250 (2022) 123823.

DOI: 10.1016/j.energy.2022.123823

Google Scholar

[17] Y. Kirim, H. Sadikoglu, M. Melikoglu, Technical and economic analysis of biogas and solar photovoltaic (PV) hybrid renewable energy system for dairy cattle barns, Renew. Energ. 188 (2022) 873-889.

DOI: 10.1016/j.renene.2022.02.082

Google Scholar

[18] T. Ni, J. Si, X. Gong, K. Zhang, M. Pan, Thermodynamic and economic analysis of a novel cascade waste heat recovery system for solid oxide fuel cell, Energ. Convers. Manage. 259 (2022) 115562.

DOI: 10.1016/j.enconman.2022.115562

Google Scholar

[19] R. Hu, X. Liu, X. Zhang, L. Yang, Analysis of energy, economy, and carbon emission of nested cascade refrigeration cycle with heat recovery system, Int. J. Refrig. 136 (2022) 94-102.

DOI: 10.1016/j.ijrefrig.2022.01.016

Google Scholar

[20] J. Seo, C. Kim, K. Park, Fabrication and thermoelectric properties of Sr1−xSixMnO3−δ, Powder Technol. 278 (2015) 11-16.

DOI: 10.1016/j.powtec.2015.02.035

Google Scholar

[21] Y. Wang, F. Li, L. Xu, Y. Sui, X. Wang, W. Su, X. Liu, Large Thermal Conductivity Reduction Induced by La/O Vacancies in the Thermoelectric LaCoO3 System, Inorg. Chem. 50 (2011) 4412–4416.

DOI: 10.1021/ic200178x

Google Scholar

[22] Y. Wang, H. Jin Fan, Improved Thermoelectric Properties of La1-xSrxCoO3 Nanowires, J. Phys. Chem. C 114 (2010) 13947–13953.

Google Scholar

[23] Y. Kobayashi, S. Murata, K. Asai, J. Tranquada, G. Shirane, K. Kohn, Magnetic and transport properties of LaCo1-xNixO3-Comparison with La1-xSrxCoO3, J. Phys. Soc. Jpn. 68 (1999) 1011-1017.

Google Scholar

[24] K. Muta, Y. Kobayashi, K. Asai, Magnetic, Electronic Transport, and Calorimetric Investigations of La1-xCaxCoO3 in Comparison with La1-xSrxCoO3, J. Phys. Soc. Jpn. 71 (2002) 2784-2791.

Google Scholar

[25] H. Masuda, T. Fujita, T. Miyashita, M. Soda, Y. Yasui, Y. Kobayashi, M. Sato, Transport and Magnetic Properties of R1-xAxCoO3 (R = La, Pr and Nd; A = Ba, Sr and Ca), J. Phys. Soc. Jpn. 72 (2003) 873-878.

DOI: 10.1143/jpsj.72.873

Google Scholar

[26] F. Li and J.-F. Li, Effect of Ni substitution on electrical and thermoelectric properties of LaCoO3 ceramics, Ceram. Int. 37 (2011)105–110.

DOI: 10.1016/j.ceramint.2010.08.024

Google Scholar

[27] H. Kozuka, K. Ohbayashi, K. Koumoto, LaCo1−xNixO3 with Improved Electrical Conductivity, Inorg. Chem. 51 (2012) 9259−9264.

DOI: 10.1021/ic301386s

Google Scholar

[28] A. Kumar, K. Kumari, B. Jayachandran, D. Sivaprahasam, A. D. Thakur, Thermoelectric properties of (1-x)LaCoO3.xLa0.7Sr0.3MnO3 composite, J. Alloy. Compd. 749 (2018) 1092-1097.

DOI: 10.1016/j.jallcom.2018.03.347

Google Scholar

[29] G. Thornton, B. C. Tofield A. W. Hewat, A neutron diffraction study of LaCoO3 in the temperature range 4.2 < T < 1248 K, J. Solid State Chem. 61 (1986) 301-307.

DOI: 10.1016/0022-4596(86)90035-6

Google Scholar

[30] S. Muraleedharan, N. Davis, R. Althaf, A. Singh, A. M. Ashok, Exploring the thermoelectric behavior of intrinsic and defect induced LaCoO3 with selected alkaline earth metals, J. Alloy. Compd. 857 (2021) 157507.

DOI: 10.1016/j.jallcom.2020.157507

Google Scholar

[31] R. Robert, L. Bocher, B. Sipos, M. Döbeli, A. Weidenkaff, Ni-doped cobaltates as potential materials for high temperature solar thermoelectric converters, Prog Solid State Ch. 35 (2007) 447-455.

DOI: 10.1016/j.progsolidstchem.2007.01.020

Google Scholar

[32] L. Fu and J.-F. Li, Preparation and Thermoelectric Properties of LaCoO3 Ceramics, Key Eng. Mat. 434-435 (2010) 404-408.

Google Scholar

[33] A. Kumar, D. Sivaprahasam, A. D. Thakur, Improved thermoelectric properties in (1-x) LaCoO3/(x) La0.7Sr0.3CoO3 composite, Mater. Chem. Phys. 269 (2021) 124750.

DOI: 10.1016/j.matchemphys.2021.124750

Google Scholar

[34] U. Deepika Shanubhogue, A. Pal, A. Rao, S. Chattopadhyay, A. M. Ashok, N. Davis, Tuning optical and thermoelectric properties of LaCoO3: Partial substitution of La by isovalent Gd, J. Alloy. Compd. 941 (2023) 168987.

DOI: 10.1016/j.jallcom.2023.168987

Google Scholar

[35] P. M. Chaikin and G. Beni, Thermopower in the correlated hopping regime, Phys. Rev. B 13 (1976) 647-651.

DOI: 10.1103/physrevb.13.647

Google Scholar

[36] A. Mineshige, M. Kobune, S. Fujii, Z. Ogumi, M. Inaba , K. Kikuchi, Metal-Insulator Transition and Crystal Structure of La1-xSrxCoO3 as Functions of Sr-Content, Temperature, and Oxygen Partial Pressure, J. Solid State Chem. 142 (1999) 374-381.

DOI: 10.1006/jssc.1998.8051

Google Scholar

[37] A. Maignan, D. Flahaut, S. Hébert, Sign change of the thermoelectric power in LaCoO3, Eur. Phys. J. B 39 (2004) 145-148.

DOI: 10.1140/epjb/e2004-00179-8

Google Scholar