[1]
M.M. Lopes, M.D.T. Casagrande, Mechanical Improvement of a Reinforced Sand with Açaí (Euterpe oleracea) Fibers, IOP Conf. Ser. Mater. Sci Eng. 1260 (2022) 1-8.
DOI: 10.1088/1757-899x/1260/1/012025
Google Scholar
[2]
P.G. Nicholson, Geosynthetic Reinforced Soil. Soil Improvement and Ground Modification Methods, Elsevier; 2015, p.343–369.
DOI: 10.1016/b978-0-12-408076-8.00014-5
Google Scholar
[3]
A.A. de Carvalho, K. de S. Leite, J.M.E. de Matos, Passive of CRFS Technology in Soil-Cement Application, Sustainability 15 (2023) 1-16.
DOI: 10.3390/su15065562
Google Scholar
[4]
E. Botero, A. Ossa, G. Sherwell, E. Ovando-Shelley, Stress-strain behavior of a silty soil reinforced with polyethylene terephthalate (PET), Geotextiles and Geomembranes 43(4) (2015) 363-369.
DOI: 10.1016/j.geotexmem.2015.04.003
Google Scholar
[5]
T.T. Nguyen, B. Indraratna, Natural Fibre for Geotechnical Applications: Concepts, Achievements and Challenges, Sustainability. 15(11) (2023) 1-18.
DOI: 10.3390/su15118603
Google Scholar
[6]
P. Buathong, T. Chompoorat, P. Jongpradist, X. Chen, P. Jamsawang, Effect of Palm Fiber Reinforcement on the Unconfined Compressive Performance of Cement-Treated Sand, Sustainability. 15(11) (2023) 1-16.
DOI: 10.3390/su15118607
Google Scholar
[7]
S. Rabab'ah, O. Al Hattamleh, H. Aldeeky, B. Abu Alfoul, Effect of glass fiber on the properties of expansive soil and its utilization as subgrade reinforcement in pavement applications, Case Studies in Construction Materials. 14 (2021) 1-12.
DOI: 10.1016/j.cscm.2020.e00485
Google Scholar
[8]
N. Gul, B. Ahmed Mir, Performance evaluation of silty soil reinforced with glass fiber and cement kiln dust for subgrade applications, Constr. Build. Mater. 392 (2023).
DOI: 10.1016/j.conbuildmat.2023.131943
Google Scholar
[9]
A. Darvishi, A. Erken, Effect of polypropylene fiber on shear strength parameters of sand, World Congress on Civil, Structural, and Environmental Engineering. (2018).
DOI: 10.11159/icgre18.123
Google Scholar
[10]
C.C. Anagnostopoulos, D. Tzetzis, K. Berketis, Shear strength behaviour of polypropylene fibre reinforced cohesive soils, Geomechanics and Geoengineering. 9(3) (2014) 241-251.
DOI: 10.1080/17486025.2013.804213
Google Scholar
[11]
C. Tang, B. Shi, W. Gao, F. Chen, Y. Cai, Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil, Geotextiles and Geomembranes. 25(3) (2007) 194-202.
DOI: 10.1016/j.geotexmem.2006.11.002
Google Scholar
[12]
M. Chen, S.L. Shen, A. Arulrajah, H.N. Wu, D.W. Hou, Y.S. Xu, Laboratory evaluation on the effectiveness of polypropylene fibers on the strength of fiber-reinforced and cement-stabilized Shanghai soft clay, Geotextiles and Geomembranes. 43 (6) (2015) 515-523.
DOI: 10.1016/j.geotexmem.2015.05.004
Google Scholar
[13]
F. Changizi, A. Haddad, Stabilization of Subgrade Soil for Highway by Recycled Polyester Fiber, Journal of Rehabilitation in Civil Engineering. 2 (2014) 92–105.
Google Scholar
[14]
X. Lv, H. Zhou, Shear Characteristics of Cement-Stabilized Sand Reinforced with Waste Polyester Fiber Fabric Blocks, Advances in Materials Science and Engineering 2019 (2019) 1-13.
DOI: 10.1155/2019/3758413
Google Scholar
[15]
K.Q. Tran, T. Satomi, H. Takahashi, Improvement of mechanical behavior of cemented soil reinforced with waste cornsilk fibers. Constr. Build. Mater. 178 (2018) 204-210.
DOI: 10.1016/j.conbuildmat.2018.05.104
Google Scholar
[16]
K.Q. Tran, T. Satomi, H. Takahashi, Study on strength behavior of cement stabilized sludge reinforced with waste cornsilk fiber, International Journal of GEOMATE. 13(39) (2017) 140-147.
DOI: 10.21660/2017.39.28994
Google Scholar
[17]
J.M.G. Sotomayor, M.D.T. Casagrande, The Performance of a Sand Reinforced with Coconut Fibers Through Plate Load Tests on a True Scale Physical Model, Soils and Rocks. 41 (2018) 361-368.
DOI: 10.28927/sr.413361
Google Scholar
[18]
V. Anggraini, S. Dassanayake, E. Emmanuel, L.L. Yong, F.A. Kamaruddi, A. Syamsir, Response Surface Methodology: The Improvement of Tropical Residual Soil Mechanical Properties Utilizing Calcined Seashell Powder and Treated Coir Fibre, Sustainability. 15(4) (2023) 1-29.
DOI: 10.3390/su15043588
Google Scholar
[19]
N. dos S.L. Louzada, J.A.C. Malko, M.D.T. Casagrande, Behavior of Clayey Soil Reinforced with Polyethylene Terephthalate, Journal of Materials in Civil Engineering 31(10) (2019).
DOI: 10.1061/(asce)mt.1943-5533.0002863
Google Scholar
[20]
J.W. dos S. Ferreira, P.C. Senez, M.D.T. Casagrande. Pet fiber reinforced sand performance under triaxial and plate load tests, Case Studies in Construction Materials 15 (2021) 1-13.
DOI: 10.1016/j.cscm.2021.e00741
Google Scholar
[21]
D.C. Lucarelli, H.N. Pitanga, M.E.S. Marques, T.O. Silva, R.L. Ferraz, D.M. Nunes, Study of the geotechnical behavior of soil-cement reinforced with plastic bottle fibers, Acta Scientiarum Technology. 44 (2022) 1-13.
DOI: 10.4025/actascitechnol.v44i1.57826
Google Scholar
[22]
B. Mishra, Study on Use of Polyethylene Terephthalate (PET) Fiber for Stabilization of Subgrade Soil of Road Pavement, Journal of Innovative Research in Science, Engineering and Technology. 5 (2016) 1497 – 1504.
Google Scholar
[23]
J.P. Montardo, M.A. Vendruscolo, N.C. Consoli, P.D.M. Prietto, Características de Resistências e Deformação de um Solo Cimentado Reforçado com Fibras PET: Estudo Preliminar, Anais Associação Brasileira de Mecânica do Solos e Engenharia Geotécnica, 1998, p.1163–1167.
DOI: 10.20906/cps/cb-08-0043
Google Scholar
[24]
P.D.M. Prietto, J.P. Montardo, N.C. Consoli, Comportamento Mecânico de uma Areia Cimentada Reforçada com Fibras PET, Anais Geossintéticos 99, Rio de Janeiro, 1999, p.199–206.
DOI: 10.14195/2184-8394_102_2
Google Scholar
[25]
N.C. Consoli, J.P. Montardo, P.D.M Prietto, G.S. Pasa, Engineering behavior of a sand reinforced with plastic waste, Journal of Geotechnical and Geoenvironmental Engineering. 128(6) (2002) 462-472.
DOI: 10.1061/(asce)1090-0241(2002)128:6(462)
Google Scholar
[26]
A. Alvarez, J. Sosa, G. Duran, L. Pacheco, Improved mechanical properties of a high plasticity clay soil by adding recycled PET, IOP Conf Ser Mater Sci Eng. (2020) 1-6.
DOI: 10.1088/1757-899x/758/1/012075
Google Scholar
[27]
T.M. Adane, A.A. Araya, B. Karthikeyan, S.K. Selvaraj, S. Jose, A.J. Rajan, D.V.H. Wilson, A Novel Technique to Utilize Second Waste of Plastic Bottle as Soil Reinforcement: A Comparative Study on Mechanical Properties with Natural Black Cotton Soil, Advances in Civil Engineering 2022 (2022) 1–8.
DOI: 10.1155/2022/7225455
Google Scholar
[28]
I.M.R. Martínez, N. dos S. L. Louzada, L.M. Repsold, M.D.T. Casagrande, Mechanical Behavior of Reinforced Clayey Soil with Fine Crushed Polyethylene Terephthalate, Key Eng. Mater. 668 (2015) 404–410.
DOI: 10.4028/www.scientific.net/kem.668.404
Google Scholar
[29]
J.M.G. Chumacero, P.L.T. Acevedo, C.C.C. La Portilla, S.P.M. Perez, L.I.V. Zapata, Effect of the reuse of plastic and metallic fibers on the characteristics of a gravelly soil with clays stabilized with natural hydraulic lime, Innovative Infrastructure Solutions. 8 (2023).
DOI: 10.1007/s41062-023-01155-0
Google Scholar
[30]
S.A. Naeini, H. Rahmani, Effect of Waste Bottle Chips on Strength Parameters of Silty Soil. International Journal of Civil and Environmental Engineering. 11 (2017) 6–10.
Google Scholar
[31]
I.M. Batista, Comportamento mecânico de dois solos típicos da região de Viçosa-MG, para fins de utilização em camadas de pavimentos flexíveis, Universidade Federal de Viçosa, Viçosa, 2001.
DOI: 10.14393/19834071.2016.34274
Google Scholar
[32]
T.P. da Trindade, D.C. de Lima, C.C. Machado, C.A.B. de Carvalho, C.E.G.R. Schaefer, MPF Fontes, F.P. Caneshi, Estabilização química do subleito de estradas: influência do tempo decorrido entre a mistura e a compactação na resistência mecânica de misturas solo-RBI Grade 81, Revista Árvore. 21 (3) (2005) 413–418.
DOI: 10.1590/s0100-67622005000300008
Google Scholar
[33]
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 6457: Amostras de solo — Preparação para ensaios de compactação e ensaios de caracterização. Rio de Janeiro, 2016.
DOI: 10.11606/d.3.2012.tde-13062013-122430
Google Scholar
[34]
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 7181: Solo - Análise granulométrica. Rio de Janeiro, 2016.
Google Scholar
[35]
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 7180: Solo — Determinação do limite de plasticidade. Rio de Janeiro, 2016.
Google Scholar
[36]
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 6459: Solo — Determinação do limite de liquidez. Rio de Janeiro, 2016.
Google Scholar
[37]
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 6508: Grãos de solos que passam na peneira de 4,8 mm - Determinação da massa específica. Rio de Janeiro, 1984.
Google Scholar
[38]
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 7182: Solo - Ensaio de compactação. Rio de Janeiro, 2016.
Google Scholar
[39]
ASTM. D3080/D3080M-11: Standard test method for direct shear test of soils under consolidated drained conditions. West Conshohocken, PA, USA, 2011.
DOI: 10.1520/d3080_d3080m
Google Scholar
[40]
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 6502: Rochas e solos. Rio de Janeiro, 1995.
Google Scholar
[41]
F. Ahmad, F. Bateni, M. Azmi, Performance evaluation of silty sand reinforced with fibres, Geotextiles and Geomembranes. 28(1) (2010) 93-99.
DOI: 10.1016/j.geotexmem.2009.09.017
Google Scholar
[42]
C.C. Tang, B. Shi, L.Z. Zhao, Interfacial shear strength of fiber reinforced soil, Geotextiles and Geomembranes. 28(1) (2010) 54-62.
DOI: 10.1016/j.geotexmem.2009.10.001
Google Scholar