The Use of Plastic Bottle Fibers in the Geotechnical Improvement of Tropical Soils from the Municipality of Viçosa - Brazil

Article Preview

Abstract:

Motivated by the environmental issues generated by the accumulation of waste from discarded plastic bottles and recognizing the utility of plastic properties in engineering, this research aimed to evaluate the application of plastic bottle fibers in the geotechnical improvement of tropical soils. In this context, the influence of quantity, roughness, and width of plastic bottle fibers on the shear strength parameters of soil- fiber mixtures, of two tropical residual soils, was analyzed. The fibers used in this study are made of Polyethylene Terephthalate (PET), generated from soft drink bottles, and added to the soil in different widths, textures, and contents. Results of the direct shear test showed higher shear strength for all soil-fiber systems compared to fiber-free mixtures. Additionally, the findings indicated that the systems with rough fibers presented better performances for clayey soil, whereas those with smooth fibers obtained better behavior for sandy soil. The cohesion results highlighted the better performance of mixtures with 0.5% fibers when compared to mixtures with 1% fibers. The enhancement of mechanical properties obtained in the studied soil-fiber systems demonstrates the potential application of these composites in geotechnical works.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

247-266

Citation:

Online since:

May 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.M. Lopes, M.D.T. Casagrande, Mechanical Improvement of a Reinforced Sand with Açaí (Euterpe oleracea) Fibers, IOP Conf. Ser. Mater. Sci Eng. 1260 (2022) 1-8.

DOI: 10.1088/1757-899x/1260/1/012025

Google Scholar

[2] P.G. Nicholson, Geosynthetic Reinforced Soil. Soil Improvement and Ground Modification Methods, Elsevier; 2015, p.343–369.

DOI: 10.1016/b978-0-12-408076-8.00014-5

Google Scholar

[3] A.A. de Carvalho, K. de S. Leite, J.M.E. de Matos, Passive of CRFS Technology in Soil-Cement Application, Sustainability 15 (2023) 1-16.

DOI: 10.3390/su15065562

Google Scholar

[4] E. Botero, A. Ossa, G. Sherwell, E. Ovando-Shelley, Stress-strain behavior of a silty soil reinforced with polyethylene terephthalate (PET), Geotextiles and Geomembranes 43(4) (2015) 363-369.

DOI: 10.1016/j.geotexmem.2015.04.003

Google Scholar

[5] T.T. Nguyen, B. Indraratna, Natural Fibre for Geotechnical Applications: Concepts, Achievements and Challenges, Sustainability. 15(11) (2023) 1-18.

DOI: 10.3390/su15118603

Google Scholar

[6] P. Buathong, T. Chompoorat, P. Jongpradist, X. Chen, P. Jamsawang, Effect of Palm Fiber Reinforcement on the Unconfined Compressive Performance of Cement-Treated Sand, Sustainability. 15(11) (2023) 1-16.

DOI: 10.3390/su15118607

Google Scholar

[7] S. Rabab'ah, O. Al Hattamleh, H. Aldeeky, B. Abu Alfoul, Effect of glass fiber on the properties of expansive soil and its utilization as subgrade reinforcement in pavement applications, Case Studies in Construction Materials. 14 (2021) 1-12.

DOI: 10.1016/j.cscm.2020.e00485

Google Scholar

[8] N. Gul, B. Ahmed Mir, Performance evaluation of silty soil reinforced with glass fiber and cement kiln dust for subgrade applications, Constr. Build. Mater. 392 (2023).

DOI: 10.1016/j.conbuildmat.2023.131943

Google Scholar

[9] A. Darvishi, A. Erken, Effect of polypropylene fiber on shear strength parameters of sand, World Congress on Civil, Structural, and Environmental Engineering. (2018).

DOI: 10.11159/icgre18.123

Google Scholar

[10] C.C. Anagnostopoulos, D. Tzetzis, K. Berketis, Shear strength behaviour of polypropylene fibre reinforced cohesive soils, Geomechanics and Geoengineering. 9(3) (2014) 241-251.

DOI: 10.1080/17486025.2013.804213

Google Scholar

[11] C. Tang, B. Shi, W. Gao, F. Chen, Y. Cai, Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil, Geotextiles and Geomembranes. 25(3) (2007) 194-202.

DOI: 10.1016/j.geotexmem.2006.11.002

Google Scholar

[12] M. Chen, S.L. Shen, A. Arulrajah, H.N. Wu, D.W. Hou, Y.S. Xu, Laboratory evaluation on the effectiveness of polypropylene fibers on the strength of fiber-reinforced and cement-stabilized Shanghai soft clay, Geotextiles and Geomembranes. 43 (6) (2015) 515-523.

DOI: 10.1016/j.geotexmem.2015.05.004

Google Scholar

[13] F. Changizi, A. Haddad, Stabilization of Subgrade Soil for Highway by Recycled Polyester Fiber, Journal of Rehabilitation in Civil Engineering. 2 (2014) 92–105.

Google Scholar

[14] X. Lv, H. Zhou, Shear Characteristics of Cement-Stabilized Sand Reinforced with Waste Polyester Fiber Fabric Blocks, Advances in Materials Science and Engineering 2019 (2019) 1-13.

DOI: 10.1155/2019/3758413

Google Scholar

[15] K.Q. Tran, T. Satomi, H. Takahashi, Improvement of mechanical behavior of cemented soil reinforced with waste cornsilk fibers. Constr. Build. Mater. 178 (2018) 204-210.

DOI: 10.1016/j.conbuildmat.2018.05.104

Google Scholar

[16] K.Q. Tran, T. Satomi, H. Takahashi, Study on strength behavior of cement stabilized sludge reinforced with waste cornsilk fiber, International Journal of GEOMATE. 13(39) (2017) 140-147.

DOI: 10.21660/2017.39.28994

Google Scholar

[17] J.M.G. Sotomayor, M.D.T. Casagrande, The Performance of a Sand Reinforced with Coconut Fibers Through Plate Load Tests on a True Scale Physical Model, Soils and Rocks. 41 (2018) 361-368.

DOI: 10.28927/sr.413361

Google Scholar

[18] V. Anggraini, S. Dassanayake, E. Emmanuel, L.L. Yong, F.A. Kamaruddi, A. Syamsir, Response Surface Methodology: The Improvement of Tropical Residual Soil Mechanical Properties Utilizing Calcined Seashell Powder and Treated Coir Fibre, Sustainability. 15(4) (2023) 1-29.

DOI: 10.3390/su15043588

Google Scholar

[19] N. dos S.L. Louzada, J.A.C. Malko, M.D.T. Casagrande, Behavior of Clayey Soil Reinforced with Polyethylene Terephthalate, Journal of Materials in Civil Engineering 31(10) (2019).

DOI: 10.1061/(asce)mt.1943-5533.0002863

Google Scholar

[20] J.W. dos S. Ferreira, P.C. Senez, M.D.T. Casagrande. Pet fiber reinforced sand performance under triaxial and plate load tests, Case Studies in Construction Materials 15 (2021) 1-13.

DOI: 10.1016/j.cscm.2021.e00741

Google Scholar

[21] D.C. Lucarelli, H.N. Pitanga, M.E.S. Marques, T.O. Silva, R.L. Ferraz, D.M. Nunes, Study of the geotechnical behavior of soil-cement reinforced with plastic bottle fibers, Acta Scientiarum Technology. 44 (2022) 1-13.

DOI: 10.4025/actascitechnol.v44i1.57826

Google Scholar

[22] B. Mishra, Study on Use of Polyethylene Terephthalate (PET) Fiber for Stabilization of Subgrade Soil of Road Pavement, Journal of Innovative Research in Science, Engineering and Technology. 5 (2016) 1497 – 1504.

Google Scholar

[23] J.P. Montardo, M.A. Vendruscolo, N.C. Consoli, P.D.M. Prietto, Características de Resistências e Deformação de um Solo Cimentado Reforçado com Fibras PET: Estudo Preliminar, Anais Associação Brasileira de Mecânica do Solos e Engenharia Geotécnica, 1998, p.1163–1167.

DOI: 10.20906/cps/cb-08-0043

Google Scholar

[24] P.D.M. Prietto, J.P. Montardo, N.C. Consoli, Comportamento Mecânico de uma Areia Cimentada Reforçada com Fibras PET, Anais Geossintéticos 99, Rio de Janeiro, 1999, p.199–206.

DOI: 10.14195/2184-8394_102_2

Google Scholar

[25] N.C. Consoli, J.P. Montardo, P.D.M Prietto, G.S. Pasa, Engineering behavior of a sand reinforced with plastic waste, Journal of Geotechnical and Geoenvironmental Engineering. 128(6) (2002) 462-472.

DOI: 10.1061/(asce)1090-0241(2002)128:6(462)

Google Scholar

[26] A. Alvarez, J. Sosa, G. Duran, L. Pacheco, Improved mechanical properties of a high plasticity clay soil by adding recycled PET, IOP Conf Ser Mater Sci Eng. (2020) 1-6.

DOI: 10.1088/1757-899x/758/1/012075

Google Scholar

[27] T.M. Adane, A.A. Araya, B. Karthikeyan, S.K. Selvaraj, S. Jose, A.J. Rajan, D.V.H. Wilson, A Novel Technique to Utilize Second Waste of Plastic Bottle as Soil Reinforcement: A Comparative Study on Mechanical Properties with Natural Black Cotton Soil, Advances in Civil Engineering 2022 (2022) 1–8.

DOI: 10.1155/2022/7225455

Google Scholar

[28] I.M.R. Martínez, N. dos S. L. Louzada, L.M. Repsold, M.D.T. Casagrande, Mechanical Behavior of Reinforced Clayey Soil with Fine Crushed Polyethylene Terephthalate, Key Eng. Mater. 668 (2015) 404–410.

DOI: 10.4028/www.scientific.net/kem.668.404

Google Scholar

[29] J.M.G. Chumacero, P.L.T. Acevedo, C.C.C. La Portilla, S.P.M. Perez, L.I.V. Zapata, Effect of the reuse of plastic and metallic fibers on the characteristics of a gravelly soil with clays stabilized with natural hydraulic lime, Innovative Infrastructure Solutions. 8 (2023).

DOI: 10.1007/s41062-023-01155-0

Google Scholar

[30] S.A. Naeini, H. Rahmani, Effect of Waste Bottle Chips on Strength Parameters of Silty Soil. International Journal of Civil and Environmental Engineering. 11 (2017) 6–10.

Google Scholar

[31] I.M. Batista, Comportamento mecânico de dois solos típicos da região de Viçosa-MG, para fins de utilização em camadas de pavimentos flexíveis, Universidade Federal de Viçosa, Viçosa, 2001.

DOI: 10.14393/19834071.2016.34274

Google Scholar

[32] T.P. da Trindade, D.C. de Lima, C.C. Machado, C.A.B. de Carvalho, C.E.G.R. Schaefer, MPF Fontes, F.P. Caneshi, Estabilização química do subleito de estradas: influência do tempo decorrido entre a mistura e a compactação na resistência mecânica de misturas solo-RBI Grade 81, Revista Árvore. 21 (3) (2005) 413–418.

DOI: 10.1590/s0100-67622005000300008

Google Scholar

[33] ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 6457: Amostras de solo — Preparação para ensaios de compactação e ensaios de caracterização. Rio de Janeiro, 2016.

DOI: 10.11606/d.3.2012.tde-13062013-122430

Google Scholar

[34] ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 7181: Solo - Análise granulométrica. Rio de Janeiro, 2016.

Google Scholar

[35] ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 7180: Solo — Determinação do limite de plasticidade. Rio de Janeiro, 2016.

Google Scholar

[36] ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 6459: Solo — Determinação do limite de liquidez. Rio de Janeiro, 2016.

Google Scholar

[37] ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 6508: Grãos de solos que passam na peneira de 4,8 mm - Determinação da massa específica. Rio de Janeiro, 1984.

Google Scholar

[38] ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 7182: Solo - Ensaio de compactação. Rio de Janeiro, 2016.

Google Scholar

[39] ASTM. D3080/D3080M-11: Standard test method for direct shear test of soils under consolidated drained conditions. West Conshohocken, PA, USA, 2011.

DOI: 10.1520/d3080_d3080m

Google Scholar

[40] ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 6502: Rochas e solos. Rio de Janeiro, 1995.

Google Scholar

[41] F. Ahmad, F. Bateni, M. Azmi, Performance evaluation of silty sand reinforced with fibres, Geotextiles and Geomembranes. 28(1) (2010) 93-99.

DOI: 10.1016/j.geotexmem.2009.09.017

Google Scholar

[42] C.C. Tang, B. Shi, L.Z. Zhao, Interfacial shear strength of fiber reinforced soil, Geotextiles and Geomembranes. 28(1) (2010) 54-62.

DOI: 10.1016/j.geotexmem.2009.10.001

Google Scholar