Development of Ni-Mn-Ga Enabled Micropumps for Hybrid Microdevices in Microelectromechanical Systems

Article Preview

Abstract:

This study selects a single crystalline Ni-Mn-Ga alloy by its exceptional actuator attributes, high actuation speed, precise position control, rapid response to external magnetic fields, and extended operational lifespan. Researchers venture into uncharted territory, aiming to harness the potential of Ni-Mn-Ga alloy to revolutionize micropump performance and refine fluid manipulation within miniature devices. The methodology at the heart of this endeavor involves the seamless integration of this specialized alloy with microdevice technology, giving rise to a set of unique pump components that substantially boost pump efficiency. Crucially, Ni-Mn-Ga is the chosen material for the active part of the micropump. At the same time, MEMS fabrication handles the passive elements, all facilitated by the 0.18 µm semiconductor technology and Sivalco TCAD simulation software. Computational simulations validate the alloy's suitability, impressively achieving an accumulated flow volume of 0.15 x 10e-4 µL in 10 microseconds. Beyond its scientific significance, this research bridges MEMS technology and magnetic-enabled smart materials, showcasing the remarkable capabilities of Ni-Mn-Ga alloy in significantly enhancing micropump performance. These innovative solutions promise to open doors to groundbreaking applications in microfluidic systems across many scientific and industrial domains.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

225-234

Citation:

Online since:

May 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. Lindroos, M. Tilli, A. Lehto, T. Motooka, Handbook of Silicon Based MEMS Materials and Technologies. Oxford, UK: William Andrew, Elsevier Inc. ISBN: 978-0-8155-1594-4, (2010).

Google Scholar

[2] T.M. Adams, R.A. Layton, Advanced MEMS/NEMS fabrication and sensors. Switzerland: Springer Nature Switzerland AG. ISBN: 978-3-030-79749-2, (2022).

Google Scholar

[3] J. Dennis, A. Ahmed, M. Khir, Fabrication and characterization of a CMOS-MEMS humidity sensor, Sensors, (2015), 15(7), 16674-16687.

DOI: 10.3390/s150716674

Google Scholar

[4] M. Duque, E. Leon-Salguero, J. Sacristán, J. Esteve, G. Murillo, Optimization of a piezoelectric energy harvester and design of a charge pump converter for CMOS-MEMS monolithic integration, Sensors, (2019), 19(8), 1895

DOI: 10.3390/s19081895

Google Scholar

[5] J. Slaughter, M. Dapino, R. Smith, A. Flatau, Modeling of a Terfenol-D ultrasonic transducer, In: Smart Structures and Materials 2000: Smart Structures and Integrated Systems, (2000), 3985, 366-377.

DOI: 10.1117/12.388838

Google Scholar

[6] M. Chmielus, X. Zhang, C. Witherspoon, D. Dunand, P. Muellner, Giant magnetic-field-induced strains in polycrystalline Ni-Mn-Ga foams, Nature Materials, (2009), 8, 863-866.

DOI: 10.1038/nmat2527

Google Scholar

[7] A. Nespoli, S. Besseghini, S. Pittaccio, E. Vllia, S. Viscuso, The high potential of shape memory alloys in developing miniature mechanical devices: A review on shape memory alloy mini-actuators, Sensors and Actuators A: Physical, (2010), 158(1), 149-160.

DOI: 10.1016/j.sna.2009.12.020

Google Scholar

[8] A.S. Algamili, M.H. Khir, J.O. Dennis, A.Y. Ahmed, S.S. Alabsi, S.S.B. Hashwan, M.M. Junarid, A review of actuation and sensing mechanisms in MEMS-based senor devices, Nanoscale Research Letters, (2021), 16, 1-21.

DOI: 10.1186/s11671-021-03481-7

Google Scholar

[9] J. Judy, Microelectromechanical systems (MEMS): fabrication, design and applications, Smart Materials Structure, (2001), 10, 1115.

DOI: 10.1088/0964-1726/10/6/301

Google Scholar

[10] A. Sozinov, N. Lanska, A. Soroka, L. Straka, Highly mobile type II twin boundary in Ni-Mn-Ga five-layered martensite, Applied Physics Letters, (2011), 99(12).

DOI: 10.1063/1.3640489

Google Scholar

[11] A. Sozinov, N. Lanska, A. Soroka, W. Zou, 12% magnetic field-induced strain in Ni-Mn-Ga-based non-modulated martensite, Applied Physics Letters, (2013), 102.

DOI: 10.1063/1.4775677

Google Scholar

[12] D. Musiienko, A. Saren, K. Ullakko, Magnetic shape memory effect in single crystalline Ni-Mn-Ga foil thinned down to 1 um, Scripta Materialia, (2017), 139, 152–154.

DOI: 10.1016/j.scriptamat.2017.06.027

Google Scholar

[13] P. Webster, K. Ziebeck, S. Town, M. Peak, Magnetic order and phase transformation in Ni2MnGa. Philosophical Magazine B: Physics of Condensed Matter; Statistical Mechanics, Electronic, Optical and Magnetic Properties, (1984), 49(3), 295– 310.

DOI: 10.1080/13642817408246515

Google Scholar

[14] J. Pons, V. Chernenko, R. Santamarta, E. Cesari, Crystal structure of martensitic phases in Ni-Mn-Ga shape memory alloys, Acta Materialia, (2000), 48(12), 3027– 3038.

DOI: 10.1016/s1359-6454(00)00130-0

Google Scholar

[15] M. Marioni, R. O'Handley, S. Allen, Pulsed magnetic field-induced actuation of Ni-Mn-Ga single crystals, Applied Physics Letters, (2003), 83(19), 3966–3968.

DOI: 10.1063/1.1626021

Google Scholar

[16] S. Murray, M. Farinelli, C. Kantner, J. Huang, S. Allen, R. O'Handley, Field-induced strain under load in Ni-Mn-Ga magnetic shape memory materials, Journal of Applied Physics, (1998), 83, 7297–7299.

DOI: 10.1063/1.367758

Google Scholar

[17] D. Musiienko, A. Saren, L. Straka, M. Vronka, J. Kopecek, O. Heczko, A. Sozinov, K. Ullakko, Ultrafast actuation of Ni-Mn-Ga micropillars by pulsed magnetic field, Scripta Materialia, (2019), 162, 482–485.

DOI: 10.1016/j.scriptamat.2018.12.009

Google Scholar

[18] D. Musiienko, F. Nilsën, A. Armstrong, M. Rames, P. Vertät, R. Colman, J. capek, P. Müllner, O. Heczko, L. Straka, Effect of crystal quality on twinning stress in Ni-Mn-Ga magnetic shape memory alloys, Journal of Materials Research and Technology, (2021), 14, 1934–1944.

DOI: 10.1016/j.jmrt.2021.07.081

Google Scholar

[19] J. Liu, N. Scheerbaum, S. Kauffmann-Weiss, O. Gutfleisch, NiMn-based alloys and composites for magnetically controlled dampers and actuators, Advanced Engineering Materials, (2012), 14(8), 653–667.

DOI: 10.1002/adem.201200038

Google Scholar

[20] B. Tamadazte, E. Marchand, S. Dembélé, N. Le Fort-Piat, CAD model-based tracking and 3D visual-based control for MEMS microassembly, The International Journal of Robotics Research, (2010) 29(11), 1416-1434.

DOI: 10.1177/0278364910376033

Google Scholar

[21] V. Laitinen, Laser powder bed fusion for the manufacturing of Ni-Mn-Ga magnetic shape memory alloy actuators, DSc thesis. Lappeenranta, Finland, Lappeenranta-Lahti University of Technology LUT, (2021)

DOI: 10.3808/jeil.202000046

Google Scholar

[22] C. Chu, R. Zhu, X. Jia, X. Zhang' Design and analysis of giant magnetostrictive actuator, 2022 IEEE International Conference on Advances in Electrical Engineering and Computer Applications (AEECA), (2022), 827-832.

DOI: 10.1109/aeeca55500.2022.9918877

Google Scholar

[23] Silvaco TCAD, Semiconductor process and device simulation software, (2019), https://getintopc.com.pk/softwares/3d-cad/silvaco-tcad-2019-free-download/.

DOI: 10.1142/9789813237834_0003

Google Scholar

[24] H. Hu, K. Ullakko, Selective etch for micromachining process in manufacturing hybrid microdevices composed of Ni-Mn-Ga and silicon layers, Solid State Phenomena, (2023), 344, 81-88.

DOI: 10.4028/p-132l12

Google Scholar

[25] P. Muellner, Twinning stress of type I and type II deformation twins, Acta Materialia, (2019), 176.

DOI: 10.1016/j.actamat.2019.07.004

Google Scholar

[26] M.G. Pollack, R.B. Fair, A.D. Shenderov, Electrowetting based actuation of liquid droplets for microfluidic applications, Applied Physics Letter, (2000), 77, 1725-1727.

DOI: 10.1063/1.1308534

Google Scholar

[27] K. Kolari, Deep plasma etching of glass with as silicon shadow mask, Sensors and Actuators A Physical, (2008), 16, 677-684.

DOI: 10.1016/j.sna.2007.09.005

Google Scholar

[28] Y. Zhang, J. Cui, X. Zhao, Y. Liu, Recent progress in magnetic shape memory materials, Journal of Materials Science, (2019), 54, 8385-8413.

Google Scholar

[29] H. Jiang, H. Hu, K. Ullakko, X. Liu, S. He, and D. Guo, Magnetic smart materials enabled micropump: design, modeling, and performance analysis. 64th International Conference on Vibroengineering in Trieste, Italy, (2023).

DOI: 10.21595/vp.2023.23320

Google Scholar