Structure and Dynamics of Carbon Dioxide inside ”Hot” Ice with Cylindrical Channels

Article Preview

Abstract:

Inclusion compound based on crystalline water is increasingly recognized as a promising solution for carbon dioxide (CO2) capture, either for carbon sequestration from greenhouse gas emissions or for gas mixture separation. Molecular dynamics simulations revealed that water crystallizes into a novel porous structure in a carbon nanobrush environment even at room temperature, thus termed ”hot” ice whose structure code is dtc. This study employs a hybrid Grand Canonical/isothermal-isobaric Monte Carlo (GCMC) simulations to investigate CO2 confinement inside the cylindrical channels of ice dtc structure. The results show that CO2 occupancy, here expressed as CO2-to-water mole ratio, is approximately 2:5 at maximum. The simulations also demonstrate the mechanical stability of ice dtc structure under positive pressures when its voids are filled with CO2. Furthermore, molecular dynamics simulations are performed to provide molecular insights into the structures and dynamics of CO2 inside the porous channels framework. The results show that CO2 molecules form a bilayer structure inside the cylindrical channels, where certain molecule orientation angles are favored. Dynamics analysis shows that CO2 molecules are relatively immobile in all directions at maximum occupancy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

153-162

Citation:

Online since:

August 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] IPCC, Climate change 2007: Mitigation of climate change - Contribution of working group III to the fourth assessment report. 2007.

DOI: 10.1017/cbo9781107415416.001

Google Scholar

[2] J. Fu, P. Li, Y. Lin, H. Du, H. Liu, W. Zhu, and H. Ren, "Fight for carbon neutrality with stateof-the-art negative carbon emission technologies," Eco-Environment and Health, vol. 1, no. 4, pp.259-279, 2022.

DOI: 10.1016/j.eehl.2022.11.005

Google Scholar

[3] P. Smith, "Soil carbon sequestration and biochar as negative emission technologies," Global Change Biology, vol. 22, no. 3, pp.1315-1324, 2016.

DOI: 10.1111/gcb.13178

Google Scholar

[4] K. S. Lackner, S. Brennan, J. M. Matter, A. H. Park, A. Wright, and B. Van Der Zwaan, "The urgency of the development of CO 2 capture from ambient air," Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 33, pp.13156-13162, 2012.

DOI: 10.1073/pnas.1108765109

Google Scholar

[5] D. Moreira and J. C. Pires, "Atmospheric CO2 capture by algae: Negative carbon dioxide emission path," Bioresource Technology, vol. 215, no. 2016, pp.371-379, 2016.

DOI: 10.1016/j.biortech.2016.03.060

Google Scholar

[6] B. D. Bhide, A. Voskericyan, and S. A. Stern, "Hybrid processes for the removal of acid gases from natural gas," Journal of Membrane Science, vol. 140, pp.27-49, 1998.

DOI: 10.1016/s0376-7388(97)00257-3

Google Scholar

[7] H. Ababneh, A. AlNouss, I. A. Karimi, and S. A. Al-Muhtaseb, "Natural gas sweetening using an energy-efficient, state-of-the-art, solid-vapor separation process," Energies, vol. 15, 2022.

DOI: 10.3390/en15145286

Google Scholar

[8] S. J. Chen, Y. Fu, Y. X. Huang, Z. C. Tao, and M. Zhu, "Experimental investigation of co2 separation by adsorption methods in natural gas purification," Applied Energy, vol. 179, pp.329-337, 2016.

DOI: 10.1016/j.apenergy.2016.06.146

Google Scholar

[9] A. M. Yousef, W. M. El-Maghlany, Y. A. Eldrainy, and A. Attia, "New approach for biogas purification using cryogenic separation and distillation process for co2 capture," Energy, vol. 156, pp.328-351, 2018.

DOI: 10.1016/j.energy.2018.05.106

Google Scholar

[10] A. A. Olajire, "Co2 capture and separation technologies for end-of-pipe applications - a review," Energy, vol. 35, pp.2610-2628, 2010.

DOI: 10.1016/j.energy.2010.02.030

Google Scholar

[11] J. Gholinezhad, A. Chapoy, and B. Tohidi, "Separation and capture of carbon dioxide from co2/h2 syngas mixture using semi-clathrate hydrates," Chemical Engineering Research and Design, vol. 89, pp.1747-1751, 2011.

DOI: 10.1016/j.cherd.2011.03.008

Google Scholar

[12] S. Horii and R. Ohmura, "Continuous separation of co2 from a h2 + co2 gas mixture using clathrate hydrate," Applied Energy, vol. 225, pp.78-84, 2018.[13] M. Ricaurte, C. Dicharry, X. Renaud, and J.-P. Torré, "Combination of surfactants and organic compounds for boosting co2 separation from natural gas by clathrate hydrate formation," Fuel, vol. 122, pp.206-217, 2014.

DOI: 10.1016/j.fuel.2014.01.025

Google Scholar

[14] E. D. S. Jr and C. A. Koh, Clathrate Hydrates of Natural Gases. CRC press, 2007.

Google Scholar

[15] B. Castellani, "Potential pathway for reliable long-term co2 storage as clathrate hydrates in marine environments," Energies, vol. 16, 2023.

DOI: 10.3390/en16062856

Google Scholar

[16] J. Michl, M. Sega, and C. Dellago, "Phase stability of the ice xvii-based co2 chiral hydrate from molecular dynamics simulations," The Journal of Chemical Physics, vol. 151, p.104502, 9 2019.

DOI: 10.1063/1.5116540

Google Scholar

[17] I. P. Pradana, D. Mardiana, and L. Hakim, "Carbon dioxide occupancies inside ice xvii structure from grand-canonical monte carlo simulation," IOP Conference Series: Materials Science and Engineering, vol. 833, p.012035, 5 2020.

DOI: 10.1088/1757-899x/833/1/012035

Google Scholar

[18] D. M. Amos, M.-E. Donnelly, P. Teeratchanan, C. L. Bull, A. Falenty, W. F. Kuhs, A. Hermann, and J. S. Loveday, "A chiral gas-hydrate structure common to the carbon dioxide-water and hydrogen-water systems," The Journal of Physical Chemistry Letters, vol. 8, pp.4295-4299, 9 2017.

DOI: 10.1021/acs.jpclett.7b01787

Google Scholar

[19] L. del Rosso, M. Celli, and L. Ulivi, "New porous water ice metastable at atmospheric pressure obtained by emptying a hydrogen-filled ice," Nature Communications, vol. 7, p.13394, 2016.

DOI: 10.1038/ncomms13394

Google Scholar

[20] M. Matsumoto, T. Yagasaki, and H. Tanaka, "Formation of hot ice caused by carbon nanobrushes. ii. dependency on the radius of nanotubes," The Journal of Chemical Physics, vol. 154, p.094502, 3 2021.

DOI: 10.1063/5.0044300

Google Scholar

[21] T. Yagasaki, M. Yamasaki, M. Matsumoto, and H. Tanaka, "Formation of hot ice caused by carbon nanobrushes," The Journal of Chemical Physics, vol. 151, p.064702, 8 2019.

DOI: 10.1063/1.5111843

Google Scholar

[22] T. Matsui, M. Hirata, T. Yagasaki, M. Matsumoto, and H. Tanaka, "Communication: Hypothetical ultralow-density ice polymorphs," The Journal of Chemical Physics, vol. 147, p.91101, 2017.

DOI: 10.1063/1.4994757

Google Scholar

[23] T. Matsui, T. Yagasaki, M. Matsumoto, and H. Tanaka, "Phase diagram of ice polymorphs under negative pressure considering the limits of mechanical stability," The Journal of Chemical Physics, vol. 150, p.41102, 2019.

DOI: 10.1063/1.5083021

Google Scholar

[24] L. Hakim, K. Koga, and H. Tanaka, "Phase behavior of different forms of ice filled with hydrogen molecules," Physical Review Letters, vol. 104, p.115701, 3 2010.

DOI: 10.1103/physrevlett.104.115701

Google Scholar

[25] L. Hakim, K. Koga, and H. Tanaka, "Novel neon-hydrate of cubic ice structure," Physica A: Statistical Mechanics and its Applications, vol. 389, pp.1834-1838, 5 2010.

DOI: 10.1016/j.physa.2009.12.021

Google Scholar

[26] L. Hakim, K. Koga, and H. Tanaka, "Thermodynamic stability of hydrogen hydrates of ice ic and ii structures," Phys. Rev. B, vol. 82, p.144105, Oct 2010.

Google Scholar

[27] L. Hakim, M. Matsumoto, K. Koga, and H. Tanaka, "Inclusion of neon inside ice ic and its influence to the ice structure," Journal of the Physical Society of Japan, vol. 81, p.18, 11 2012.

DOI: 10.1143/jpsjs.81sa.sa018

Google Scholar

[28] M. Matsuo, Y. Takii, M. Matsumoto, and H. Tanaka, "On the occupancy of carbon dioxide clathrate hydrates: Grandcanonical monte carlo simulations," Journal of the Physical Society of Japan, vol. 81, p. SA027, 1 2012.

DOI: 10.1143/JPSJS.81SA.SA027

Google Scholar

[29] U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G. Pedersen, "A smooth particle mesh ewald method," The Journal of Chemical Physics, vol. 103, pp.8577-8593, 11 1995.[30] Z. Zhang and Z. Duan, "An optimized molecular potential for carbon dioxide," The Journal of Chemical Physics, vol. 122, p.214507, 6 2005.

DOI: 10.1063/1.470117

Google Scholar

[31] J. L. F. Abascal and C. Vega, "A general purpose model for the condensed phases of water: Tip4p/2005," The Journal of Chemical Physics, vol. 123, p.234505, 12 2005.

DOI: 10.1063/1.2121687

Google Scholar

[32] D.-M. DUH, D. HENDERSON, and R. L. ROWLEY, "Some effects of deviations from the lorentz-berthelot combining rules for mixtures of lennard-jones fluids," Molecular Physics, vol. 91, pp.1143-1147, 1997.

DOI: 10.1080/00268979709482801

Google Scholar

[33] M. Matsumoto, T. Yagasaki, and H. Tanaka, "Genice: Hydrogen-disordered ice generator," Journal of Computational Chemistry, vol. 39, pp.61-64, 2018.

DOI: 10.1002/jcc.25077

Google Scholar

[34] M. Matsumoto, T. Yagasaki, and H. Tanaka, "Novel algorithm to generate hydrogen-disordered ice structures," Journal of Chemical Information and Modeling, vol. 61, pp.2542-2546, 11 2021.

DOI: 10.1021/acs.jcim.1c00440

Google Scholar

[35] J. D. Bernal and R. H. Fowler, "A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions," The Journal of Chemical Physics, vol. 1, pp.515-548, 11 2004.

DOI: 10.1063/1.1749327

Google Scholar

[36] M. Parrinello and A. Rahman, "Polymorphic transitions in single crystals: A new molecular dynamics method," Journal of Applied Physics, vol. 52, pp.7182-7190, 12 1981.

DOI: 10.1063/1.328693

Google Scholar

[37] W. G. Hoover, "Canonical dynamics: Equilibrium phase-space distributions," Physical Review A, vol. 31, pp.1695-1697, 3 1985.

DOI: 10.1103/physreva.31.1695

Google Scholar

[38] S. Nosé, "A unified formulation of the constant temperature molecular dynamics methods," The Journal of Chemical Physics, vol. 81, pp.511-519, 7 1984.

DOI: 10.1063/1.447334

Google Scholar

[39] M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess, and E. Lindahl, "Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers," SoftwareX, vol. 1-2, pp.19-25, 2015.

DOI: 10.1016/j.softx.2015.06.001

Google Scholar

[40] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak, "Molecular dynamics with coupling to an external bath," The Journal of Chemical Physics, vol. 81, pp.3684-3690, 10 1984.

DOI: 10.1063/1.448118

Google Scholar

[41] W. Lu, H. Guo, I. Chou, R. Burruss, and L. Li, "Determination of diffusion coefficients of carbon dioxide in water between 268 and 473k in a high-pressure capillary optical cell with in situ raman spectroscopic measurements," Geochimica et Cosmochimica Acta, vol. 115, pp.183-204, 2013.

DOI: 10.1016/j.gca.2013.04.010

Google Scholar