[1]
IEA. (2022). Buildings. IEA. Retrieved 23 May 2022, from https://www.iea.org/reports/ buildings
Google Scholar
[2]
C. Zhang, Y. Zou, J. Dimyadi, and R. Chang, "Thermal-textured BIM generation for building energy audit with UAV image fusion and histogram-based enhancement," Energy Build, vol. 301, p.113710, Dec. 2023.
DOI: 10.1016/J.ENBUILD.2023.113710
Google Scholar
[3]
J. Donges, F. Morandi, A. Prada, F. Cappelletti, and A. Gasparella, "Occupants' interaction with building services: Development of a camera-based method for detailed monitoring of windows, shadings, and lights," Build Environ, vol. 248, p.111078, Jan. 2024.
DOI: 10.1016/J.BUILDENV.2023.111078
Google Scholar
[4]
T. Rakha and A. Gorodetsky, "Review of Unmanned Aerial System (UAS) applications in the built environment: Towards automated building inspection procedures using drones," Autom Constr, vol. 93, p.252–264, Sep. 2018.
DOI: 10.1016/J.AUTCON.2018.05.002
Google Scholar
[5]
https://www.energy.gov/energysaver/thermographic-inspections
Google Scholar
[6]
Rakha, T., Liberty, A., Gorodetsky, A., Kakillioglu, B., & Velipasalar, S. (2018). Heat Mapping Drones: An Autonomous Computer-Vision-Based Procedure for Building Envelope Inspection Using Unmanned Aerial Systems (UAS). Technology Architecture and Design, 2(1), 30-44
DOI: 10.1080/24751448.2018.1420963
Google Scholar
[7]
Y. Hou, R. Volk, M. Chen, and L. Soibelman, "Fusing tie points' RGB and thermal information for mapping large areas based on aerial images: A study of fusion performance under different flight configurations and experimental conditions," Autom Constr, vol. 124, p.103554, Apr. 2021.
DOI: 10.1016/J.AUTCON.2021.103554
Google Scholar
[8]
S. Einizinab et al., "Enabling technologies for remote and virtual inspection of building work," Autom Constr, vol. 156, p.105096, Dec. 2023.
DOI: 10.1016/J.AUTCON.2023.105096
Google Scholar
[9]
T. Rakha, Y. El Masri, K. Chen, E. Panagoulia, and P. De Wilde, "Building envelope anomaly characterization and simulation using drone time-lapse thermography," Energy Build, vol. 259, p.111754, Mar. 2022.
DOI: 10.1016/J.ENBUILD.2021.111754
Google Scholar
[10]
Singh M, Sharston R. A literature review of building energy simulation and computational fluid dynamics co-simulation strategies and its implications on the accuracy of energy predictions. Building Services Engineering Research and Technology. 2022;43(1):113-138
DOI: 10.1177/01436244211020465
Google Scholar
[11]
R. Albatici, A. M. Tonelli, and M. Chiogna, "A comprehensive experimental approach for the validation of quantitative infrared thermography in the evaluation of building thermal transmittance," Appl Energy, vol. 141, p.218–228, Mar. 2015.
DOI: 10.1016/J.APENERGY.2014.12.035
Google Scholar
[12]
L. Hoegner, U. Stilla, Mobile thermal mapping for matching of infrared images with 3D building models and 3D point clouds, Quantit. InfraRed. Thermogr.J., 6733 (2018), pp.1-19
DOI: 10.1080/17686733.2018.1455129
Google Scholar
[13]
J.R. Martínez De Dios, A. Ollero, J. Ferruz, Infrared inspection of buildings using autonomous helicopters, IFAC Proceedings Volumes (IFAC-PapersOnline), 4 (2006), pp.602-607, 10.3182/20060912-3-DE-2911.00105, no. PART 1
DOI: 10.3182/20060912-3-de-2911.00105
Google Scholar
[14]
Generation of TIR-attributed 3D point clouds from UAV-based thermal imagery Photogram. Fernerkund. Geoinform., 2015 (5) (2015), pp.381-393, 10.1127/1432- 8364/2015/0274
DOI: 10.1127/1432-8364/2015/0274
Google Scholar
[15]
Alexander, Q.G., Hoskere, V., Narazaki, Y. et al. Fusion of thermal and RGB images for automated deep learning based crack detection in civil infrastructure. AI Civ. Eng. 1, 3 (2022)
DOI: 10.1007/s43503-022-00002-y
Google Scholar
[16]
J. Xu, X. Shu, P. Qiao, S. Li, and J. Xu, "Developing a digital twin model for monitoring building structural health by combining a building information model and a real-scene 3D model," Measurement, vol. 217, p.112955, Aug. 2023, doi: 10.1016/ J.MEASUREMENT.2023.112955.
DOI: 10.1016/j.measurement.2023.112955
Google Scholar
[17]
R.Z. Angel, B. Kawtar, N. Manuel, IFC+: towards the integration of IoT into early stages of building design Autom. Constr., 136 (104149) (2022), pp.1-17
Google Scholar
[18]
Zhang, S., Jiang, P. Implementation of BIM + WebGIS Based on Extended IFC and Batched 3D Tiles Data: An Application in RCC Gravity Dam for Republication of Design Change Model. KSCE J Civ Eng 25, 4045–4064 (2021)
DOI: 10.1007/s12205-021-0115-9
Google Scholar
[19]
https://dljicdn.com/downloads/Mavic_2_Enterprise/20210413/Mavic_2_Enterprise_Series User_Manual-EN.pdf
Google Scholar
[20]
I.N. Swamidoss, A. Bin Amro, S. Sayadi, Systematic approach for thermal imaging camera calibration for machine vision applications, Optik, 247 (2021), Article 168039
DOI: 10.1016/j.ijleo.2021.168039
Google Scholar
[21]
R. Usamentiaga, D.F. Garcia, C. Ibarra-Castanedo, X. Maldague, Highly accurate geometric calibration for infrared cameras using inexpensive calibration targets, Measurement, 112 (2017), pp.105-116
DOI: 10.1016/j.measurement.2017.08.027
Google Scholar
[22]
S. Zhang, F. Huang, B. Liu, H. Zhong, G. Li, Y. Chen, Z. Wang, Optimized calibration method for ultra-field dual bands cameras based on thermal radiation checkerboard, Infrared Phys. Technol., 108 (2020), Article 103346
DOI: 10.1016/j.infrared.2020.103346
Google Scholar
[23]
Z.Z. Wu, H.C. Chen, S.Y. Du, M.Y. Fu, N. Zhou, N.N. Zheng, Correntropy based scale ICP algorithm for robust point set registration, Pattern Recogn., 93 (2019), pp.14-24
DOI: 10.1016/j.patcog.2019.03.013
Google Scholar
[24]
W.M. Li, P.F. Song, A modified ICP algorithm based on dynamic adjustment factor for registration of point cloud and CAD model, Pattern Recogn. Lett., 65 (2015), pp.88-94
DOI: 10.1016/j.patrec.2015.07.019
Google Scholar
[25]
H.R. Ren, X.M. Feng, calculating vertical deformation using a single InSAR pair based on singular value decomposition in mining areas, Int. J. Appl. Earth Observ. Geoinform., 102115 (2020), pp.1-7
DOI: 10.1016/j.jag.2020.102115
Google Scholar
[26]
K.S. Arun, T.S. Huang, S.D. Blostein, Least-squares fitting of two 3-D point sets, IEEE Trans. Pattern Anal. Mach. Intell. PAMI-9(5) (1987) 698–700.
DOI: 10.1109/TPAMI.1987.4767965
Google Scholar
[27]
Laine, Tuomas & Hänninen, Reijo & Karola, Antti. BENEFITS OF BIM IN THE THERMAL PERFORMANCE MANAGEMENT.
Google Scholar
[28]
Romo I. 2003. ProIT leaflet, Product Model Data in the Construction Process, Helsinki: Confederation of Finnish Construction Industries RT. http://virtual.vtt.fi/proit_eng/newsletters/proit_leaflet_no1.pdf
Google Scholar
[29]
Laine T. 2007. ProIT TATE, "Product modelling in building services design", "Tuotemallintaminen talotekniikkasuunnittelussa", only in Finnish language, Helsinki.
Google Scholar
[30]
Yu Hou, Meida Chen, Rebekka Volk, Lucio Soibelman,Investigation on performance of RGB point cloud and thermal information data fusion for 3D building thermal map modeling using aerial images under different experimental conditions,Journal of Building Engineering,Volume 45, 2022, 103380, ISSN 2352 - 7102, https://doi.org/10.1016/j.jobe.2021.103380. (https://www.sciencedirect.com/science/art icle/pii/S2352710221012389)
DOI: 10.1016/j.jobe.2021.103380
Google Scholar
[31]
https://renewablemarketwatch.com/news-analysis/209-drones-uavs-to-take-off-in-energy- efficiency-audits-of-buildings-and-houses
Google Scholar
[32]
Naghman Khan, Evaluating Design with BIM Modeling and Simulation, September 27, 2023, https://www.simscale.com/blog/bim-modeling/
Google Scholar