Electric Response of a Negative Dielectric Anisotropy Nematic Liquid Crystal Doped with Ionic Dopant

Article Preview

Abstract:

The electrical properties measurements have been performed in a homogeneous alignment parallelepiped cell containing 4-methoxy benzylidene- 4-butylaniline (MBBA) liquid crystal doped with 0.02%wt tetrabutylammonium bromide (TBAB). The measurement of the complex permittivity was conducted in the nematic phase, covering a frequency range of 42 Hz to 5 MHz. A new relaxation mode was observed in the low-frequency region, which was not present in pure MBBA. The obtained dielectric dispersion could be fitted using the double Cole–Cole formula to determine the relaxation frequencies. The steady-state current exhibited a nonlinear dependence on the applied voltage, and hysteresis was observed in the transient current-voltage characteristic curve.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

21-27

Citation:

Online since:

October 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Schadt and W. Helfrich, Voltage-dependent optical activity of a twisted nematic liquid crystal, Appl. Phys. Lett., 18 (1971)127-128.

DOI: 10.1063/1.1653593

Google Scholar

[2] A. Buka, N. Éber, W. Pesch, L. Kramer, Convective patterns in liquid crystals driven by electric field, in: A.A. Golovin, A.A. Nepomnyashchy (Eds.), Advances in sensing with security applications. NATO Science Series II: Mathematics, Physics and Chemistry, vol 218, Springer, Dordrecht, 2006, pp.55-82.

DOI: 10.1007/1-4020-4355-4_02

Google Scholar

[3] E.F. Carr, Influence of electric fields on the molecular alignment in the liquid crystal p-(anisalamino)-phenyl Acetate, Mol. Cryst., 7 (1969) 253-268.

DOI: 10.1080/15421406908084876

Google Scholar

[4] W. Helfrich, Conduction‐induced alignment of nematic liquid crystals: Basic model and stability considerations, J. Chem. Phys., 51 (1969) 4092-4105.

DOI: 10.1063/1.1672632

Google Scholar

[5] S. Kai, K. Yamaguchi. and K. Hirakawa, Observation of flow figures in nematic liquid crystal MBBA, Jpn. J. Appl. Phys., 14 (1975) 1653-16.

DOI: 10.1143/jjap.14.1653

Google Scholar

[6] J.-H. Huh and S. Kai, Electroconvection in nematic liquid crystals in Hele-Shaw cells, Phys. Rev. E, 68 (2003) 042702-1-4

DOI: 10.1103/physreve.68.042702

Google Scholar

[7] E. M. Kusumasari, A.J. Suharli, B. Mahendra, and Yusril Yusuf, Flows in parallelepiped cells of nematic liquid crystals, Phys. Rev. E, 106 (2022) 064702-1-6

DOI: 10.1103/physreve.106.064702

Google Scholar

[8] P.C. Wu, S.Y. Yang, and W. Lee, Recovery of UV-degraded electrical properties of nematic liquid crystals doped with TiO2 nanoparticles, J. Mol. Liq., 218 (2016) 150-156.

DOI: 10.1016/j.molliq.2016.02.029

Google Scholar

[9] Y. Zhan, H. Lu, M. Jin and G. Zhou, Electrohydrodynamic instabilities for smart window applications, Liq. Cryst., 47 (2020) 977-983.

DOI: 10.1080/02678292.2019.1692929

Google Scholar

[10] V.S. Sutormin, M.N. Krakhalev, O.O. Prishchepa, W. Lee and V.Y. Zyryanov, Electro-optical response of an ionic-surfactant-doped nematic cell with homeoplanar–twisted configuration transition, Opt. Mater. Express, 4 (2014) 810-815.

DOI: 10.1364/ome.4.000810

Google Scholar

[11] H. Shaban, P.C. Wu, J.H. Lee, and W. Lee, Dielectric and electro-optical responses of a dielectrically negative nematic liquid crystal doped with cationic surfactant, Opt. Mater. Express, 11 (2021) 3208-3222.

DOI: 10.1364/ome.437701

Google Scholar

[12] O.V. Kovalchuk, T.M. Kovalchuk, N. Tomašovičová, M. Timko, K. Zakutanska, D. Miakota, P. Kopčanský, O.F. Shevchuk, and Y. Garbovskiy, Dielectric and electrical properties of nematic liquid crystals 6CB doped with iron oxide nanoparticles. The combined effect of nanodopant concentration and cell thickness, J. Mol. Liq., 366 (2022) 120305-1-9.

DOI: 10.1016/j.molliq.2022.120305

Google Scholar

[13] Anu, D. Varshney, K. Yadav, J. Prakash, H. Meena, G. Singh, Tunable dielectric and memory features of ferroelectric layered perovskite Bi4Ti3O12 nanoparticles doped nematic liquid crystal composite, J. Mol. Liq., 369 (2023) 120820-1-14.

DOI: 10.1016/j.molliq.2022.120820

Google Scholar

[14] A. Rani, S. Chakraborty, A. Sinha, Effect of CdSe/ZnS quantum dots doping on the ion transport behavior in nematic liquid crystal, J. Mol. Liq., 342 (2021) 117327-1-13.

DOI: 10.1016/j.molliq.2021.117327

Google Scholar

[15] Y. Takikawa1, K. Kaneko, S. Odani, T. Ikemura, and M. Iwata, Dielectric anisotropy in PCPB/MBBA mixtures showing the dual frequency characteristic, Jpn. J. Appl. Phys., 59 (2020) SDDB05-1-6.

DOI: 10.7567/1347-4065/ab4ece

Google Scholar

[16] K.S. Cole and R.H. Cole, Dispersion and absorption in dielectrics I. Alternating current characteristics, J. Chem. Phys., 9 (1941) 341-351.

DOI: 10.1063/1.1750906

Google Scholar

[17] L.N. Bugaeva, A.M. Gabovich, P.P. Korniychuk, Y.A. Reznikov, K. Singer, and A.I. Voitenko, DC current in 4-N-Pentyl-4'-Cyanobiphenyl liquid crystal cells, Mol. Cryst. Liq. Cryst., 540 (2011) 182-187.

DOI: 10.1080/15421406.2011.568839

Google Scholar

[18] P.P. Korniychuka, A.M. Gabovich, K. Singer, A.I. Voitenko, and Y.A. Reznikov, Transient and steady electric currents through a liquid crystal cell, Liq. Cryst., 37 (2010) 1171-1181.

DOI: 10.1080/02678292.2010.490622

Google Scholar

[19] H. Mada and H. Yamada, Measurement of Steady-State Current Flowing in Nematic Liquid Crystal, Jpn. J. Appl. Phys., 33 (1994) 5886-5887

DOI: 10.1143/jjap.33.5886

Google Scholar