[1]
J. A. Kafalas, N. Menyuk, K. Dwight, and J. M. Longo, "Effect of pressure on the magnetic properties of Ca1-xSr xMnO3," J. Appl. Phys., vol. 42, no. 4, p.1497–1498, 1971.
DOI: 10.1063/1.1660316
Google Scholar
[2]
H. Taguchi, M. Sonoda, and M. Nagao, "Relationship between Angles for Mn-O-Mn and Electrical Properties of Orthorhombic Perovskite-Type (Ca1-xSrx)MnO3," J. Solid State Chem., vol. 137, no. 1, p.82–86, 1998.
DOI: 10.1006/jssc.1997.7701
Google Scholar
[3]
I. Gil De Muro, M. Insausti, L. Lezama, and T. Rojo, "Morphological and magnetic study of CaMnO3-x oxides obtained from different routes," J. Solid State Chem., vol. 178, no. 3, p.928–936, 2005.
DOI: 10.1016/j.jssc.2004.06.052
Google Scholar
[4]
S. B. Mary, M. Francis, V. G. Sathe, V. Ganesan, and A. L. Rajesh, "Enhanced thermoelectric property of nanostructured CaMnO3 by sol-gel hydrothermal method," Phys. B Condens. Matter, vol. 575, no. July, p.411707, 2019.
DOI: 10.1016/j.physb.2019.411707
Google Scholar
[5]
N. Galinsky, A. Mishra, J. Zhang, and F. Li, "Ca1−xAxMnO3(A = Sr and Ba) perovskite based oxygen carriers for chemical looping with oxygen uncoupling (CLOU)," Appl. Energy, vol. 157, p.358–367, 2015.
DOI: 10.1016/j.apenergy.2015.04.020
Google Scholar
[6]
E. I. Goldyreva, I. A. Leonidov, M. V. Patrakeev, and V. L. Kozhevnikov, "Temperature activated electron transport in CaMnO3," Solid State Ionics, vol. 262, p.678–681, 2014.
DOI: 10.1016/j.ssi.2013.12.022
Google Scholar
[7]
R. Kabir et al., "Improvement in the thermoelectric properties of CaMnO3 perovskites by W doping," J. Mater. Sci., vol. 49, no. 21, pp.7522-7528, 2014.
DOI: 10.1007/s10853-014-8459-x
Google Scholar
[8]
M. Molinari, D. A. Tompsett, S. C. Parker, F. Azough, and R. Freer, "Structural, electronic and thermoelectric behaviour of CaMnO3 and CaMnO(3-δ)," J. Mater. Chem. A, vol. 2, no. 34, p.14109–14117, 2014.
DOI: 10.1039/c4ta01514b
Google Scholar
[9]
K. Pradeep et al., "Improved thermoelectric property of cation-substituted CaMnO3," Chinese Phys. B, vol. 24, no. 9, 2015.
DOI: 10.1088/1674-1056/24/9/098101
Google Scholar
[10]
Y. Kun, Jia, Changping, Wei, Jie, Xu, Zhijun, Lu, Minna, "Effects of Sr doping on high temperature electric properties of CaMnO_(3+δ)-based compounds," Chem. Ind. Eng. Prog., vol. 5, 2011, [Online]. Available: http://en.cnki.com.cn/Article_en/CJFDTotal-HGJZ201105027.htm.
Google Scholar
[11]
L. Imponenti, K. J. Albrecht, J. W. Wands, M. D. Sanders, and G. S. Jackson, "Thermochemical energy storage in strontium-doped calcium manganites for concentrating solar power applications," Sol. Energy, vol. 151, p.1–13, 2017, doi: 10.1016/j.solener. 2017.05.010.
DOI: 10.1016/j.solener.2017.05.010
Google Scholar
[12]
F. P. Zhang, J. W. Zhang, J. X. Zhang, X. Y. Yang, Q. M. Lu, and X. Zhang, "Effects of Sr doping on electronic and thermoelectrical transport properties of CaMnO3 based oxide," Wuli Xuebao/Acta Phys. Sin., vol. 66, no. 24, 2017.
DOI: 10.7498/aps.66.247202
Google Scholar
[13]
C. Ni, J. Ni, Z. Zhou, and M. Jin, "Structural and chemical stability of Sr-, Nb- and Zr-doped calcium manganite as oxygen-storage materials," J. Alloys Compd., vol. 709, p.789–795, 2017.
DOI: 10.1016/j.jallcom.2017.03.214
Google Scholar
[14]
D. Srivastava et al., "Crystal structure and thermoelectric properties of Sr-Mo substituted CaMnO3: A combined experimental and computational study," J. Mater. Chem. C, vol. 3, no. 47, p.12245–12259, 2015.
DOI: 10.1039/c5tc02318a
Google Scholar
[15]
F. P. Zhang et al., "Doping induced electronic structure and estimated thermoelectric properties of CaMnO3 system," Phys. B Condens. Matter, vol. 406, no. 6–7, p.1258–1262, 2011.
DOI: 10.1016/j.physb.2011.01.011
Google Scholar
[16]
K. K. Liu et al., "Improved thermoelectric performance in Pr and Sr Co-doped CaMnO3 materials," J. Alloys Compd., vol. 808, 2019.
DOI: 10.1016/j.jallcom.2019.07.188
Google Scholar
[17]
F. P. Zhang, Q. M. Lu, X. Zhang, and J. X. Zhang, "Electrical transport properties of CaMnO3 thermoelectric compound: A theoretical study," J. Phys. Chem. Solids, vol. 74, no. 12, p.1859–1864, 2013.
DOI: 10.1016/j.jpcs.2013.07.019
Google Scholar
[18]
M. E. M. Jorge, A. C. Dos Santos, and M. R. Nunes, "Effects of synthesis method on stoichiometry, structure and electrical conductivity of CaMnO3-δ," Int. J. Inorg. Mater., vol. 3, no. 7, p.915–921, 2001.
DOI: 10.1016/S1466-6049(01)00088-5
Google Scholar
[19]
M. E. M. Jorge, M. R. Nunes, R. S. Maria, and D. Sousa, "Metal-insulator transition induced by Ce doping in CaMnO3," Chem. Mater., vol. 17, no. 8, p.2069–2075, 2005.
DOI: 10.1021/cm040188b
Google Scholar
[20]
S. Bošković, J. Dukić, B. Matović, L. Živković, M. Vlajić, and V. Krstić, "Nanopowders properties and sintering of CaMnO3 solid solutions," J. Alloys Compd., vol. 463, no. 1–2, p.282–287, 2008.
DOI: 10.1016/j.jallcom.2007.08.083
Google Scholar
[21]
I. Matos, S. Sério, M. E. Lopes, M. R. Nunes, and M. E. M. Jorge, "Effect of the sintering temperature on the properties of nanocrystalline Ca1-xSmxMnO3 (0 ≤ x ≤ 0.4) powders," J. Alloys Compd., vol. 509, no. 40, p.9617–9626, 2011.
DOI: 10.1016/j.jallcom.2011.07.032
Google Scholar
[22]
P. H. Isasi, M. E. Lopes, M. R. Nunes, and M. E. Melo Jorge, "Low-temperature synthesis of nanocrystalline Ca1-xHoxMnO3-δ (0≤x≤0.3) powders," J. Phys. Chem. Solids, vol. 70, no. 2, p.405–411, 2009.
DOI: 10.1016/j.jpcs.2008.11.010
Google Scholar
[23]
B. M. Ferreira, M. E. Melo Jorge, M. E. Lopes, M. R. Nunes, and M. I. da Silva Pereira, "Properties of Ca1-xHoxMnO3 perovskite-type electrodes," Electrochim. Acta, vol. 54, no. 24, p.5902–5908, 2009.
DOI: 10.1016/j.electacta.2009.05.054
Google Scholar
[24]
C. Silveira, M. E. Lopes, M. R. Nunes, and M. E. M. Jorge, "Synthesis and electrical properties of nanocrystalline Ca1 - xEuxMnO3 ± δ (0.1 ≤ x ≤ 0.4) powders prepared at low temperature using citrate gel method," Solid State Ionics, vol. 180, no. 40, p.1702–1709, 2010.
DOI: 10.1016/j.ssi.2009.10.017
Google Scholar
[25]
Y. Yin, B. Tudu, and A. Tiwari, "Recent advances in oxide thermoelectric materials and modules," Vacuum, vol. 146, p.356–374, 2017.
DOI: 10.1016/j.vacuum.2017.04.015
Google Scholar
[26]
J. Macan et al., "Soft chemistry synthesis of CaMnO3 powders and films," Ceram. Int., vol. 46, no. 11, p.18200–18207, 2020.
DOI: 10.1016/j.ceramint.2020.04.142
Google Scholar
[27]
C. M. Kim, D. H. Kim, H. Y. Hong, and K. Park, "Thermoelectric properties of La3+ and Ce3+ co-doped CaMnO3 prepared by tape casting," J. Eur. Ceram. Soc., vol. 40, no. 3, p.735–741, 2020.
DOI: 10.1016/j.jeurceramsoc.2019.08.021
Google Scholar
[28]
A. Lamhani, Mohammed, Chchiyai, Zakaria, Elomrani, "The effect of Sr substitution on the structural and physical properties of manganite perovskites Ca1−xSrxMnO3−δ (0 ≤ x ≤ 1)," Phys. Chem. Chem. Phys., no. 32, 2022.
DOI: 10.1039/D2CP01096H
Google Scholar
[29]
L. Žužić, Andreja, Pavić, "The role of the A-site cation and crystal structure on the electrical conductivity of strontium-doped calcium and barium manganites," J. Alloys Compd., vol. 935, p.167949, 2023.
DOI: 10.1016/j.jallcom.2022.167949
Google Scholar
[30]
R. Sridhar, D. Ravinder, and K. Vijaya Kumar, "Temperature-dependence thermoelectric power studies of mixed Ni-Cu nano ferrites," J. Alloys Compd., vol. 645, p.436–442, 2015.
DOI: 10.1016/j.jallcom.2015.05.041
Google Scholar
[31]
JCPDS, "JCPDS card No. 89-0666."
Google Scholar
[32]
M. J. Iqbal and S. Farooq, "Effect of doping of divalent and trivalent metal ions on the structural and electrical properties of magnesium aluminate," Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., vol. 136, no. 2–3, p.140–147, 2007.
DOI: 10.1016/j.mseb.2006.09.009
Google Scholar
[33]
J. E. Ni et al., "The thermal expansion coefficient as a key design parameter for thermoelectric materials and its relationship to processing-dependent bloating," J. Mater. Sci., vol. 48, no. 18, p.6233–6244, 2013.
DOI: 10.1007/s10853-013-7421-7
Google Scholar
[34]
D. Kenfaui, D. Chateigner, M. Gomina, and J. G. Noudem, "Texture, mechanical and thermoelectric properties of Ca3Co4O9 ceramics," J. Alloys Compd., vol. 490, no. 1–2, p.472–479, 2010.
DOI: 10.1016/j.jallcom.2009.10.048
Google Scholar
[35]
W. Liu, Q. Jie, H. S. Kim, and Z. Ren, "Current progress and future challenges in thermoelectric power generation: From materials to devices," Acta Mater., vol. 87, no. 155, p.357–376, 2015.
DOI: 10.1016/j.actamat.2014.12.042
Google Scholar
[36]
D. Muchilo, A. Mrotzek, E. Müller, K. Kozlowska, J. Plewa, and H. Altenburg, "Development of mechanically and chemically stable electrical contacts for thermoelectric oxide material," Int. Conf. Thermoelectr. ICT, Proc., vol. 2003-Janua, p.243–246, 2003.
DOI: 10.1109/ICT.2003.1287494
Google Scholar
[37]
K. Venkataramana, C. Madhuri, Y. Suresh Reddy, G. Bhikshamaiah, and C. Vishnuvardhan Reddy, "Structural, electrical and thermal expansion studies of tri-doped ceria electrolyte materials for IT-SOFCs," J. Alloys Compd., vol. 719, p.97–107, 2017.
DOI: 10.1016/j.jallcom.2017.05.022
Google Scholar
[38]
S. LeBlanc, "Thermoelectric generators: Linking material properties and systems engineering for waste heat recovery applications," Sustain. Mater. Technol., vol. 1, p.26–35, 2014.
DOI: 10.1016/j.susmat.2014.11.002
Google Scholar
[39]
R. Funahashi, S. Urata, K. Mizuno, T. Kouuchi, and M. Mikami, "Ca2.7Bi0.3Co4O9/La 0.9Bi0.1NiO3 thermoelectric devices with high output power density," Appl. Phys. Lett., vol. 85, no. 6, p.1036–1038, 2004.
DOI: 10.1063/1.1780593
Google Scholar
[40]
R. Funahashi, M. Mikami, T. Mihara, S. Urata, and N. Ando, "A portable thermoelectric-power-generating module composed of oxide devices," J. Appl. Phys., vol. 99, no. 6, p.17–20, 2006.
DOI: 10.1063/1.2180449
Google Scholar