Carbon-Nickel Oxide Nanofiber based Supercapacitors for Improvement of Electrochemical Performance

Article Preview

Abstract:

Now a days, demand for electrical energy is increasing because most of our gadgets and devices based on electricity. Due to the depletion of fossil fuel much more attention is given to renewable energy sources and devices to store that energy. Between these energy storage devices electrochemical energy storage devices has got more attention and among electrochemical energy storage devices, batteries are dominant, but they experience some safety issue, slow charge transfer and cannot meet high power requirement for numerous applications. Thus, as compare to batteries supercapacitor have high power density and fast charge transfer. So much more attention is going on to increase the performance of supercapacitors. In this study, hydrothermal method is used to synthesis rGO/NiO composite and electrospinning to fabricate rGO/NiO composite nanofibers. Scanning electron microscopy (SEM) and x-ray diffraction (XRD) is performed to study morphological and structural properties. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) are performed to study the electrochemical behavior. Reduced graphene oxide shows specific capacitance as low as 91.6 F/g. NiO nanostructures, rGO/NiO composite and rGO/NiO composite nanofibers shows specific capacitance of 256.4 F/g, 537.8 F/g and 663.8 F/g respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

13-20

Citation:

Online since:

October 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Winter, R. J. Brodd, What are batteries, fuel cells, and supercapacitors?, Chemical reviews 104(2004)4245-4270.

DOI: 10.1021/cr020730k

Google Scholar

[2] Zhu, Zhengxin, Rechargeable batteries for grid scale energy storage, Chemical Reviews 122 (2022).

Google Scholar

[3] X. Qin, Y. Wang, H. Wang, H. Lin, X. Zhang, Y. Li, Z. Li, L. Wang, Reinforced concrete inspired Si/rGO/cPAN hybrid electrode: highly improved lithium storage via Si electrode nanoarchitecture engineering, Nanoscale  14 (2022) 6488-6496.

DOI: 10.1039/d2nr00278g

Google Scholar

[4] CM. Park, J.H. Kim, H. Kim, H. J. Sohn, Li-alloy based anode materials for Li secondary batteries. Chemical Society Reviews 39(2010) 3115-3141.

DOI: 10.1039/b919877f

Google Scholar

[5] J. W. Shim, Synergistic control of SMES and battery energy storage for enabling dispatchability of renewable energy sources, IEEE transactions on applied superconductivity 23(2013).

DOI: 10.1109/tasc.2013.2241385

Google Scholar

[6] N.R. Chodankar, H. D. Pham, A. K. Nanjundan, J. FS. Fernando, K. Jayaramulu, D. Golberg, Y.K. Han, D.P. Dubal, True meaning of pseudocapacitors and their performance metrics: asymmetric versus hybrid supercapacitors, Small 16(2020) 2002806.

DOI: 10.1002/smll.202002806

Google Scholar

[7] S. Suriyakumar, P Bhardwaj, AN Grace, AM Stephan, Role of polymers in enhancing the performance of electrochemical supercapacitors. a review, Batteries & Supercaps 4(2021).

DOI: 10.1002/batt.202000272

Google Scholar

[8] R. Zhou, K.H. Lam, Development of supercapacitors with 3D porous structures, Chem ElectroChem (2024).

Google Scholar

[9] Z. Abdullah, A. W. Anwar, I. U. Haq, Z. Arslan, A. Mubashar, S. Ahmad, A. Waheed, M. Ajmal, I. A. Baig, Synthesis of Graphene Oxide/Poly (Vinyl Alcohol) Composite and Investigation of Graphene Oxide Effect on Diameter and Pore Size of Poly (Vinyl Alcohol) Nanofibers, Journal of Nano Research 78 (2023) 23-30.

DOI: 10.4028/p-y1y1ln

Google Scholar

[10] E. Frackowiak, Q. Abbas, F. Béguin, Carbon/carbon supercapacitors, Journal of Energy Chemistry 22(2013).

Google Scholar

[11] M. Nasibi, M. A. Golozar, G. Rashed, Nanoporous carbon black particles as an electrode material for electrochemical double layer capacitors, Materials Letters 91(2013).

DOI: 10.1016/j.matlet.2012.09.088

Google Scholar

[12] R. Kumar, An overview of recent progress in nanostructured carbon-based supercapacitor electrodes: From zero to bi-dimensional materials, Carbon 193(2022).

DOI: 10.1016/j.carbon.2022.03.023

Google Scholar

[13] J.P. Zheng, P.C. Goonetilleke, C.M. Pettit, D Roy, Probing the electrochemical double layer of an ionic liquid using voltammetry and impedance spectroscopy: A comparative study of carbon nanotube and glassy carbon electrodes in [EMIM]+[EtSO4]−, Talanta 81(2010) 1045-1055.

DOI: 10.1016/j.talanta.2010.01.059

Google Scholar

[14] Z. Zhai, L. Zhang, T. Du, B. Ren, Y. Xu, S. Wang, J. Miao, Z. Liu, A review of carbon materials for supercapacitors, Materials & Design 221(2022) 111017.

DOI: 10.1016/j.matdes.2022.111017

Google Scholar

[15] T. Saleh, A. K. Badawi, R. S. Salama, M. Mokhtar, M. Mostafa, Design and development of novel composites containing nickel ferrites supported on activated carbon derived from agricultural wastes and its application in water remediation, Materials 16(2023) 2170.

DOI: 10.3390/ma16062170

Google Scholar

[16] F.T. Johra, J.W. Lee, WG Jung, Facile and safe graphene preparation on solution based platform, Journal of Industrial and Engineering Chemistry 20(2014) 2883-2887.

DOI: 10.1016/j.jiec.2013.11.022

Google Scholar

[17] M. Ana, M. G. PMS Neves, T. Trindade, Functionalization of graphene oxide with porphyrins. synthetic routes and biological applications, ChemPlusChem 85(2020).

DOI: 10.1002/cplu.202000455

Google Scholar

[18] S. Verma, Amine-amide functionalized graphene oxide sheets as bifunctional adsorbent for the removal of polar organic pollutants, Journal of Hazardous Materials 429 (2022).

DOI: 10.1016/j.jhazmat.2022.128308

Google Scholar

[19] Z. Liu, Preparation of monolithic polymer columns with homogeneous structure via photoinitiated thiol-yne click polymerization and their application in separation of small molecules, Analytical chemistry 86(2014).

DOI: 10.1021/ac503626v

Google Scholar