[1]
D. P. Shay, N. J. Podraza, N. J. Donnelly, C. A, Randall, High energy density, high tempearture capacitors utilizing Mn-Doped 0.8CaTiO3-0.2CaHfO3 ceramis, J. Am. Ceramics. Society., 95, 1348-55 (2012)
DOI: 10.1111/j.1551-2916.2011.04962.x
Google Scholar
[2]
N. Ortega, A. Kumar, J. F. Scott, B. C. Douglas, Relaxor-Ferroelectric superlattices: high energy density capacitors, J. Phys. : Condens. Matter, 24, 445901 (2012)
DOI: 10.1088/0953-8984/24/44/445901
Google Scholar
[3]
Niu, Zhong-Hua, Yan-Ping Jiang, Xin-Gui Tang, Qiu-Xiang Liu, and Wen-Hua Li. "B-site non-stoichiometric (Pb0. 97La0. 02)(Zr0. 95Ti0. 05) O3 antiferroelectric ceramics for energy storage." Journal of Asian Ceramic Societies 6, no. 3 (2018): 240-246.
DOI: 10.1080/21870764.2018.1501126
Google Scholar
[4]
J Chen, Y. Zhang, C. Deng, X. Dai, Effect of the Ba/Ti Ratio on the Microstructure and dielectric properties of Barium Titanate-Based Glass-ceramics, Journal of the American Ceramic Society, 92, 1350-1353 (2009)
DOI: 10.1111/j.1551-2916.2009.03028.x
Google Scholar
[5]
Q. Zhang, L. Wang, J. Luo, Q. Tang,J. Du, B, Ba0.4Sr0.6TiO3/MgO composites with enhanced energy storage density and low dielectric loss for solid-state pulse-forming line, Int. J. Appl. Ceram. Technol., 7, E124-8, (2010)
DOI: 10.1111/j.1744-7402.2009.02456.x
Google Scholar
[6]
S. Chao, F. Dogan, BaTiO3-SrTiO3 layered dielectrics for energy storage, Mater. Lett., 65, 978-81 (2011)
DOI: 10.1016/j.matlet.2010.12.043
Google Scholar
[7]
Y. Zhang, J. Huang, T. Ma, X. Wang, C. Deng, Sintering temperartue dependence of energy-storage properties in (Ba,Sr)TiO3 Glass ceramics, J. Am. Ceramics. Society., 94, 1805-10 (20119)
DOI: 10.1111/j.1551-2916.2010.04301.x
Google Scholar
[8]
M. Pollet, S. Marinel, and G. Desgardin. "CaZrO3, a Ni-co-sinterable dielectric material for base metal-multilayer ceramic capacitor applications." Journal of the European Ceramic Society 24, no. 1 (2004): 119-127.
DOI: 10.1016/s0955-2219(03)00122-5
Google Scholar
[9]
U. Weber, G. Greuel, U. Boettger, S. Weber, D. Hennings, and R.Waser. "Dielectric properties of Ba (Zr, Ti) O3‐based ferroelectrics for capacitor applications." Journal of the American Ceramic Society 84, no. 4 (2001): 759-766.
DOI: 10.1111/j.1151-2916.2001.tb00738.x
Google Scholar
[10]
P.V. Sreenivas, K. Dhiren, B. Pradhan, C. Riggs, B. Douglas and R. S. Katiyar. "Structure, ferroelectric, dielectric and energy storage studies of Ba0. 70Ca0. 30TiO3, Ba (Zr0. 20Ti0. 80) O3 ceramic capacitors." Integrated Ferroelectrics 157, no. 1 (2014): 139-146.
DOI: 10.1080/10584587.2014.912939
Google Scholar
[11]
C. Covaci, and A. Gontean. ""Singing" Multilayer Ceramic Capacitors and Mitigation Methods- A Review." Sensors 22, no. 10 (2022): 3869.
DOI: 10.3390/s22103869
Google Scholar
[12]
Huiling Gong, Xiaohui Wang, Shaopeng Zhang, Hai Wen, Longtu Li, Grain size effect on electrical and reliability characteristics of modified fine-grained BaTiO3 ceramics for MLCCs, Journal of the European Ceramic Society, 34 (70), 1733-1739 (2014)
DOI: 10.1016/j.jeurceramsoc.2013.12.028
Google Scholar
[13]
Bin Tai, Yang Jin, Jinfeng Wang, Fadong Peng, Xin Li, Xiangyang Peng, Grain size engineered (Ba,Sr)(Zr,Ti)O3 ceramics with excellent energy storage properties for high-voltage pulsed capacitors, Ceramics International, 48 (12), 17046-17052 (2022)
DOI: 10.1016/j.ceramint.2022.02.260
Google Scholar
[14]
B. Jaffe, W. R. Cook, and H. Jaffe, "INTERPRETATION OF SOME EXPERIMENTAL RESULTS," Piezoelectric Ceramics, B. Jaffe, W. R. Cook and H. Jaffe, eds., pp.237-251: Academic Press (1971)
DOI: 10.1016/b978-0-12-379550-2.50014-4
Google Scholar
[15]
B. Jaffe, W. R. Cook, and H. Jaffe, "Properties of PbTiO3, PbZrO3, PbSnO3, and PbHfO3 Plain and Modified," Piezoelectric Ceramics, B. Jaffe, W. R. Cook and H. Jaffe, eds., pp.115-134: Academic Press, (1971)
DOI: 10.1016/b978-0-12-379550-2.50010-7
Google Scholar
[16]
B. Jaffe, W. R. Cook, and H. Jaffe, "BARIUM TITANATE," Piezoelectric Ceramics, B. Jaffe, W. R. Cook and H. Jaffe, eds., pp.53-114: Academic Press, (1971)
DOI: 10.1016/b978-0-12-379550-2.50009-0
Google Scholar
[17]
Qi, Junlei, Minhao Zhang, Yiying Chen, Zixi Luo, Peiyao Zhao, Hang Su, Jian Wang et al. "High-entropy assisted BaTiO3-based ceramic capacitors for energy storage." Cell Reports Physical Science 3, no. 11 (2022).
DOI: 10.1016/j.xcrp.2022.101110
Google Scholar
[18]
Love, Gordon R. "Energy storage in ceramic dielectrics." Journal of the American Ceramic Society 73, no. 2 (1990): 323-328.
DOI: 10.1111/j.1151-2916.1990.tb06513.x
Google Scholar
[19]
Susumu Nishigaki, Kanji Murano, and Akio Ohkoshi, Dielectric Properties of Ceramics in the System (Sr0.5Pb0.25Ca0.25)Ti03-Bi2O3.TiO2 and their applications in a High-Voltage Capacitor, Development Center, Sony Corporation, Tokyo, Japan, Journal of the American Ceramic Society-Nishigaki et al. Vol. 65, No. 11 (1982)
DOI: 10.1111/j.1151-2916.1982.tb10781.x
Google Scholar
[20]
Zong-Yang Shen, Qi-Guo Hu, Yue-Ming Li, Zhu-Mei Wang, Wen-Qin Lu, Structure and dielectric properties of Re0.02Sr0.97TiO3 (Re = La, Sm, Gd, Er) ceramics for high-voltage capacitor applications, J. Am. Ceramics Soc.,96 (8) 2551-2555, (2013)
DOI: 10.1111/jace.12364
Google Scholar
[21]
F. D. Morrison, D. C. Sinclair, and A. R. West, Doping Mechanisms and electrical properties of La-doped BaTiO3 ceramics, Int. J. Inorg. Mater., 3, 1205-10, (2001)
DOI: 10.1016/s1466-6049(01)00128-3
Google Scholar
[22]
Ang, Chen, and Zhi Yu. "High capacitance-temperature sensitivity and "giant" dielectric constant in SrTiO3." Applied physics letters 90, no. 20 (2007).
DOI: 10.1063/1.2736298
Google Scholar