Increasing the Performance of Mixed Cation Mixed Halide Lead Based Perovskite Solar Cell by Passivating the Rare Interface: A SCAPS-1D Numerical Simulation Investigation

Article Preview

Abstract:

Thermal and photo instabilities are two major issues for organic-inorganic lead halide perovskite solar cells. Mixing of A site cations and X cite halogens are tried to address these issues, but the performance is still not reached the theoretical Shockley Quissier limit. One of the reasons for this is the energy loss ratio with band gap energy. Despite the high open circuit voltage, this ratio is lower for perovskite solar cell in competition with silicon technology. Open circuit voltage can be increased by different ways, but short circuit current is compromised. To increase open circuit voltage without affecting the short circuit current is the surface passivation technique. Numerous studies have been conducted on electron transport layer and perovskite interface, with a very few on hole transport layer and perovskite interface. Both interfaces are equally important. Here we passivated the later interface by inserting a 10 nm thick layer of caesium-formamide based lead mixed halide perovskite in FAMA mixed perovskite solar cell. Our proposed model achieved an efficiency of 31.42 % with a high fill factor of 86.4 %. At the same time, we recorded higher open circuit voltage of 1.46 V and 25.49 mA/cm2 short circuit current. Our proposed model will help in experimental work for making highly efficient perovskite solar cells.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

51-58

Citation:

Online since:

October 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. S. R. Bati, Y. L. Zhong, P. L. Burn, M. K. Nazeeruddin, P. E. Shaw, and M. Batmunkh, Next-generation applications for integrated perovskite solar cells, Communications Materials, vol. 4, no. 1. 2023.

DOI: 10.1038/s43246-022-00325-4

Google Scholar

[2] J. Y. Shao et al., Recent progress in perovskite solar cells: material science, Science China Chemistry, vol. 66, no. 1. Science Press (China), p.10–64, Jan. 01, 2023.

DOI: 10.1007/s11426-022-1445-2

Google Scholar

[3] T. A. Chowdhury, M. A. Bin Zafar, M. Sajjad-Ul Islam, M. Shahinuzzaman, M. A. Islam, and M. U. Khandaker, Stability of perovskite solar cells: issues and prospects, RSC Advances, vol. 13, no. 3. p.1787–1810, 2023.

DOI: 10.1039/d2ra05903g

Google Scholar

[4] H. Zhang et al., Improving the stability and performance of perovskite solar cells: Via off-the-shelf post-device ligand treatment, Energy Environ. Sci., vol. 11, no. 8, p.2253–2262, 2018.

DOI: 10.1039/c8ee00580j

Google Scholar

[5] Q. Zhang and Y. Yin, All-Inorganic Metal Halide Perovskite Nanocrystals: Opportunities and Challenges, ACS Cent. Sci., vol. 4, no. 6, p.668–679, Jun. 2018.

DOI: 10.1021/acscentsci.8b00201

Google Scholar

[6] L. Liu et al., Grain‐boundary 'patches' by in situ conversion to enhance perovskite solar cells stability, Adv. Mater., vol. 30, no. 29, p.1800544, 2018.

Google Scholar

[7] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J. Am. Chem. Soc., vol. 131, no. 17, p.6050–6051, 2009.

DOI: 10.1021/ja809598r

Google Scholar

[8] J.-G. Kim, J.-H. Lee, S.-I. Na, H. H. Lee, Y. Kim, and H.-K. Kim, Semi-transparent perovskite solar cells with directly sputtered amorphous InZnSnO top cathodes for building integrated photovoltaics, Org. Electron., vol. 78, p.105560, 2020.

DOI: 10.1016/j.orgel.2019.105560

Google Scholar

[9] Ashif Mohammad and Farhana Mahjabeen, Promises and Challenges of Perovskite Solar Cells: A Comprehensive Review, BULLET J. Multidisiplin Ilmu, vol. 2, no. 5, p.1147–1157, 2023, Accessed: Jun. 26, 2024. [Online]. Available: https://www.journal.mediapublikasi.id/ index.php/bullet/article/view/3685

Google Scholar

[10] Y. Zhao and K. Zhu, Solution chemistry engineering toward high-efficiency perovskite solar cells, J. Phys. Chem. Lett., vol. 5, no. 23, p.4175–4186, 2014.

DOI: 10.1021/jz501983v

Google Scholar

[11] W. S. Yang et al., High-performance photovoltaic perovskite layers fabricated through intramolecular exchange, Science (80-. )., vol. 348, no. 6240, p.1234–1237, 2015.

DOI: 10.1126/science.aaa9272

Google Scholar

[12] Z. Li, M. Yang, J.-S. Park, S.-H. Wei, J. J. Berry, and K. Zhu, Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys, Chem. Mater., vol. 28, no. 1, p.284–292, 2016.

DOI: 10.1021/acs.chemmater.5b04107

Google Scholar

[13] D.-H. Choi, H.-J. Seok, D.-H. Kim, S.-K. Kim, and H.-K. Kim, Thermally-evaporated C60/Ag/C60 multilayer electrodes for semi-transparent perovskite photovoltaics and thin film heaters, Sci. Technol. Adv. Mater., vol. 21, no. 1, p.435–449, 2020.

DOI: 10.1080/14686996.2020.1780472

Google Scholar

[14] H.-J. Seok et al., Zno: Ga-graded ITO electrodes to control interface between PCBM and ITO in planar perovskite solar cells, Sci. Technol. Adv. Mater., vol. 20, no. 1, p.389–400, 2019.

DOI: 10.1080/14686996.2019.1599695

Google Scholar

[15] H.-J. Seok and H.-K. Kim, Study of sputtered ITO films on flexible invar metal foils for curved perovskite solar cells, Metals (Basel)., vol. 9, no. 2, p.120, 2019.

DOI: 10.3390/met9020120

Google Scholar

[16] J.-H. Kim et al., Transparent Sn-doped In2O3 electrodes with a nanoporous surface for enhancing the performance of perovskite solar cells, J. Power Sources, vol. 418, p.152–161, 2019.

DOI: 10.1016/j.jpowsour.2019.02.018

Google Scholar

[17] J. Yang, B. D. Siempelkamp, D. Liu, and T. L. Kelly, Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques, ACS Nano, vol. 9, no. 2, p.1955–1963, 2015.

DOI: 10.1021/nn506864k

Google Scholar

[18] A. M. A. Leguy et al., Reversible hydration of CH3NH3PbI3 in films, single crystals, and solar cells, Chem. Mater., vol. 27, no. 9, p.3397–3407, 2015.

Google Scholar

[19] B. Hailegnaw, S. Kirmayer, E. Edri, G. Hodes, and D. Cahen, Rain on methylammonium lead iodide based perovskites: possible environmental effects of perovskite solar cells, J. Phys. Chem. Lett., vol. 6, no. 9, p.1543–1547, 2015.

DOI: 10.1021/acs.jpclett.5b00504

Google Scholar

[20] C. C. Stoumpos, C. D. Malliakas, and M. G. Kanatzidis, Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties, Inorg. Chem., vol. 52, no. 15, p.9019–9038, 2013.

DOI: 10.1021/ic401215x

Google Scholar

[21] B. Conings et al., Intrinsic thermal instability of methylammonium lead trihalide perovskite, Adv. Energy Mater., vol. 5, no. 15, p.1500477, 2015.

Google Scholar

[22] T. M. Koh et al., Formamidinium-containing metal-halide: an alternative material for near-IR absorption perovskite solar cells, J. Phys. Chem. C, vol. 118, no. 30, p.16458–16462, 2014.

DOI: 10.1021/jp411112k

Google Scholar

[23] G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, and H. J. Snaith, Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells, Energy Environ. Sci., vol. 7, no. 3, p.982–988, 2014.

DOI: 10.1039/c3ee43822h

Google Scholar

[24] S. Pang et al., NH2CH NH2PbI3: An alternative organolead iodide perovskite sensitizer for mesoscopic solar cells, Chem. Mater., vol. 26, no. 3, p.1485–1491, 2014.

DOI: 10.1021/cm404006p

Google Scholar

[25] N. Pellet et al., Mixed‐organic‐cation Perovskite photovoltaics for enhanced solar‐light harvesting, Angew. Chemie Int. Ed., vol. 53, no. 12, p.3151–3157, 2014.

DOI: 10.1002/anie.201309361

Google Scholar

[26] J. Lee, D. Seol, A. Cho, and N. Park, High‐efficiency perovskite solar cells based on the black polymorph of HC (NH2) 2PbI3, Adv. Mater., vol. 26, no. 29, p.4991–4998, 2014.

DOI: 10.1002/adma.201401137

Google Scholar

[27] N. J. Jeon et al., Compositional engineering of perovskite materials for high-performance solar cells, Nature, vol. 517, no. 7535, p.476–480, 2015.

DOI: 10.1038/nature14133

Google Scholar

[28] A. Binek, F. C. Hanusch, P. Docampo, and T. Bein, Stabilization of the trigonal high-temperature phase of formamidinium lead iodide, J. Phys. Chem. Lett., vol. 6, no. 7, p.1249–1253, 2015.

DOI: 10.1021/acs.jpclett.5b00380

Google Scholar

[29] D. P. McMeekin et al., A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells, Science (80-. )., vol. 351, no. 6269, p.151–155, Jan. 2016.

DOI: 10.1126/science.aad5845

Google Scholar

[30] J. Lee, D. Kim, H. Kim, S. Seo, S. M. Cho, and N. Park, Formamidinium and cesium hybridization for photo‐and moisture‐stable perovskite solar cell, Adv. Energy Mater., vol. 5, no. 20, p.1501310, 2015.

DOI: 10.1002/aenm.201501310

Google Scholar

[31] M. Saliba et al., Cesium-containing triple cation perovskite solar cells: Improved stability, reproducibility and high efficiency, Energy Environ. Sci., vol. 9, no. 6, p.1989–1997, 2016.

DOI: 10.1039/c5ee03874j

Google Scholar

[32] K. A. Bush et al., Controlling Thin-Film Stress and Wrinkling during Perovskite Film Formation, ACS Energy Lett., vol. 3, no. 6, p.1225–1232, 2018, doi: 10.1021/acsenergylett. 8b00544.

DOI: 10.1021/acsenergylett.8b00544

Google Scholar

[33] B. Groeneveld, … S. A.-E., and undefined 2020, Stable cesium formamidinium lead halide perovskites: a comparison of photophysics and phase purity in thin films and single crystals, Wiley Online Libr. Groeneveld, S Adjokatse, O Nazarenko, HH Fang, GR Blake, G Portale, H DuimEnergy Technol. 2020•Wiley Online Libr., Accessed: May 08, 2024. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/

DOI: 10.1002/ente.201901041

Google Scholar

[34] Z. Hu, H. Xiang, M. Schoenauer Sebag, L. Billot, L. Aigouy, and Z. Chen, Compact layer free mixed-cation lead mixed-halide perovskite solar cells, Chem. Commun., vol. 54, no. 21, p.2623–2626, 2018.

DOI: 10.1039/c7cc06183h

Google Scholar

[35] S. Prathapani, P. Bhargava, and S. Mallick, Electronic band structure and carrier concentration of formamidinium–cesium mixed cation lead mixed halide hybrid perovskites, Appl. Phys. Lett., vol. 112, no. 9, 2018.

DOI: 10.1063/1.5016829

Google Scholar

[36] Z. Wang et al., Efficient and air‐stable mixed‐cation lead mixed‐halide perovskite solar cells with n‐doped organic electron extraction layers, Adv. Mater., vol. 29, no. 5, p.1604186, 2017.

DOI: 10.1002/adma.201604186

Google Scholar

[37] Z. Rong et al., Materials Design Rules for Multivalent Ion Mobility in Intercalation Structures, Chem. Mater., vol. 27, no. 17, p.6016–6021, Sep. 2015.

DOI: 10.1021/acs.chemmater.5b02342

Google Scholar

[38] K. S. Bhardwaj, S. Rai, Sadanand, P. Lohia, and D. K. Dwivedi, Investigating the performance of mixed cation mixed halide-based perovskite solar cells using various hole-transport materials by numerical simulation, Opt. Quantum Electron., vol. 53, no. 11, p.602, Nov. 2021.

DOI: 10.1007/s11082-021-03262-7

Google Scholar

[39] L. Q. Xie et al., Understanding the Cubic Phase Stabilization and Crystallization Kinetics in Mixed Cations and Halides Perovskite Single Crystals, J. Am. Chem. Soc., vol. 139, no. 9, p.3320–3323, Mar. 2017.

DOI: 10.1021/jacs.6b12432

Google Scholar

[40] K. T. Cho et al., Highly efficient perovskite solar cells with a compositionally engineered perovskite/hole transporting material interface, Energy Environ. Sci., vol. 10, no. 2, p.621–627, 2017.

DOI: 10.1039/c6ee03182j

Google Scholar

[41] S. Heo et al., Origins of High Performance and Degradation in the Mixed Perovskite Solar Cells, Adv. Mater., vol. 31, no. 8, Feb. 2019.

DOI: 10.1002/adma.201805438

Google Scholar

[42] Y. Huang et al., The Exploration of Carrier Behavior in the Inverted Mixed Perovskite Single-Crystal Solar Cells, Adv. Mater. Interfaces, vol. 5, no. 14, Jul. 2018.

DOI: 10.1002/admi.201800224

Google Scholar

[43] Y. Zhao et al., Perovskite seeding growth of formamidinium-lead-iodide-based perovskites for efficient and stable solar cells, Nat. Commun., vol. 9, no. 1, 2018.

DOI: 10.1038/s41467-018-04029-7

Google Scholar

[44] H. J. Snaith, Perovskites: The emergence of a new era for low-cost, high-efficiency solar cells, Journal of Physical Chemistry Letters, vol. 4, no. 21. p.3623–3630, Nov. 07, 2013.

DOI: 10.1021/jz4020162

Google Scholar

[45] P. Saint-Cast et al., High-efficiency c-si solar cells passivated with ALD and PECVD aluminum oxide, IEEE Electron Device Lett., vol. 31, no. 7, p.695–697, 2010.

DOI: 10.1109/LED.2010.2049190

Google Scholar

[46] S. K. Hau, H. L. Yip, O. Acton, N. S. Baek, H. Ma, and A. K. Y. Jen, Interfacial modification to improve inverted polymer solar cells, J. Mater. Chem., vol. 18, no. 42, p.5113–5119, 2008.

DOI: 10.1039/b808004f

Google Scholar

[47] Y. H. Lee et al., Enhanced Charge Collection with Passivation Layers in Perovskite Solar Cells, Adv. Mater., vol. 28, no. 20, p.3966–3972, May 2016.

DOI: 10.1002/adma.201505140

Google Scholar

[48] F. Giordano et al., Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells, Nat. Commun., vol. 7, no. 1, p.1–6, Jan. 2016.

DOI: 10.1038/ncomms10379

Google Scholar

[49] Y. Shao, Z. Xiao, C. Bi, Y. Yuan, and J. Huang, Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells, Nat. Commun., vol. 5, no. 1, p.1–7, Dec. 2014.

DOI: 10.1038/ncomms6784

Google Scholar

[50] J. H. Heo et al., Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors, Nat. Photonics, vol. 7, no. 6, p.486–491, 2013.

DOI: 10.1038/nphoton.2013.80

Google Scholar

[51] M.P. Eng et al., Elucidating the charge carrier separation and working mechanism of CH3NH3PbI3−xClx perovskite solar cells, J. Phys. Chem. Lett., vol. 5, no. 3461, p.3096–3100, 2014, Accessed: Jun. 02, 2024. [Online]. Available: https://www.nature.com/articles/ ncomms4461

DOI: 10.1038/ncomms4461

Google Scholar

[52] O. Von Roos, A simple theory of back surface field (BSF) solar cells, J. Appl. Phys., vol. 49, no. 6, p.3503–3511, 1978.

DOI: 10.1063/1.325262

Google Scholar

[53] K. Masuko et al., Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell, IEEE J. Photovoltaics, vol. 4, no. 6, p.1433–1435, 2014.

DOI: 10.1109/JPHOTOV.2014.2352151

Google Scholar

[54] I. J. Kramer, L. Levina, R. Debnath, D. Zhitomirsky, and E. H. Sargent, Solar cells using quantum funnels, Nano Lett., vol. 11, no. 9, p.3701–3706, Sep. 2011.

DOI: 10.1021/nl201682h

Google Scholar

[55] J. Y. Kim et al., Single-step fabrication of quantum funnels via centrifugal colloidal casting of nanoparticle films, Nat. Commun., vol. 6, 2015.

DOI: 10.1038/ncomms8772

Google Scholar

[56] M. Burgelman, P. Nollet, S. Degrave, Modelling polycrysta... - Google Scholar. Accessed: May 18, 2024. [Online]. Available: https://scholar.google.com.pk/scholar?hl=en&as_sdt=0%2C5&as_vis=1&q=M.+Burgelman%2C+P.+Nollet%2C+S.+Degrave%2C+Modelling+polycrystalline+semiconductor++solar+cells%2C+ Thin+Solid+Films+361+%282000%29+527–532%2C+https%3A%2F%2Fdoi.org% 2F10.1016%2FS0040-++609

DOI: 10.1016/s0040-6090(99)00825-1

Google Scholar

[57] Y. H. Lee, S. H. Im, J. A. Chang, J. H. Lee, and S. Il Seok, CdSe-sensitized inorganic-organic heterojunction solar cells: The effect of molecular dipole interface modification and surface passivation, Org. Electron., vol. 13, no. 6, p.975–979, 2012.

DOI: 10.1016/j.orgel.2012.02.011

Google Scholar