Properties of Gamma Ray Shielding Ho/Nd Codoped Tellurite Glasses

Article Preview

Abstract:

The more applications involving gamma radiation, the more protection and prevention are needed to avoid its negative impact. Glass as gamma radiation shielding is widely developed. In this study, tellurite glasses were prepared using composition 70TeO2 - (15-x)ZnO - 10Bi2O3 - 3Na2CO3 - 2Ho2O3 - x Nd2O3 (with x = 0, 1, 2, 3 mol%). These glasses were fabricated by the standard melt-quenching approach. The effect substitution of Nd2O3 on tellurite glasses was discussed in terms of physical (Density and Molar Volume (Vm)) and gamma radiation shielding properties. With the addition of Nd2O3 concentration, the density of tellurite glasses increases from 6.17 to 6.25 g/cm3 due to the higher molecular weight of Nd2O3. The gamma-ray shielding properties were investigated by simulating through the Phy-X PSD program within the energy range from 10-3 to 105 MeV. The results show tellurite glass with 3 mol% of Nd2O3 provides the highest Mass Attenuation Coefficient (MAC). Moreover, at energy 1 MeV the Mean Free Path (MFP) and Half Value Layer (HVL) values were 2.586 cm and 1.793 cm. It was found that adding Nd2O3 reduces the MFP and HVL values of tellurite glasses. Based on the analysis, it can be determined that Ho/Nd codoped tellurite glass with 3 mol% of Nd2O3 is the most suitable glass for gamma-ray shielding application.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

25-34

Citation:

Online since:

November 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Kaur, P., Singh, K. J., Kurudirek, M., & Thakur, S. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 223, 117309 (2019).

DOI: 10.1016/j.saa.2019.117309

Google Scholar

[2] Sayyed, M. I., Sadeq, M. S., Shaaban, K. S., El-Rehim, A. F. A., Ali, A. M., & Morshidy, H. Y. Optical Materials, 142(May), 114051 (2023).

DOI: 10.1016/j.optmat.2023.114051

Google Scholar

[3] Sopapan, P., Jaiboon, O., Laopaiboon, R., Yenchai, C., Sriwunkum, C., Issarapanacheewin, S., Akharawutchayanon, T., & Yubonmhat, K. Nuclear Engineering and Technology, 55(9), 3441–3449 (2023).

DOI: 10.1016/j.net.2023.06.014

Google Scholar

[4] Tijani, S. A., & Al-Hadeethi, Y. Ceramics International, 45(17), 23572–23577 (2019).

Google Scholar

[5] Yasmin, S., Kamislioglu, M., & Sayyed, M. I. Optik, 274(November 2022), 170529 (2023).

Google Scholar

[6] Zaid, M. H. M., Matori, K. A., Sidek, H. A. A., & Ibrahim, I. R. Nuclear Engineering and Technology, 53(4), 1323–1330 (2021).

Google Scholar

[7] Kothan, S., Kaewkhao, J., Kim, H. J., Muangmala, W., Kiatwattanacharoen, S., Jumpee, C., & Kaewjaeng, S. Structural and radiation shielding properties of Dy3+ doped phosphate glasses. Journal of Physics: Conference Series, 1428(1) (2020).

DOI: 10.1088/1742-6596/1428/1/012016

Google Scholar

[8] Tuieng, R.J., Cartmell, S.H., Kirwan, C.C., & Sherratt, M.J. Cells, 10(11), 1–25 (2021).

Google Scholar

[9] Al-Buriahi, M. S. Radiation Physics and Chemistry, 207(February), 110875 (2023).

Google Scholar

[10] Marzuki, A., Sasmi, T., Fausta, D. E., Harjana, H., Suryanti, V., & Kabalci, I. Radiation Physics and Chemistry, 205(September 2022), 110722 (2023).

DOI: 10.1016/j.radphyschem.2022.110722

Google Scholar

[11] Kavaz, E., Ekinci, N., Tekin, H. O., Sayyed, M. I., Aygün, B., & Perişanoğlu, U. F. U. K. (2019). Estimation of gamma radiation shielding qualification of newly developed glasses by using WinXCOM and MCNPX code. Progress in nuclear energy, 115, 12-20.

DOI: 10.1016/j.pnucene.2019.03.029

Google Scholar

[12] Ardiansyah, A., Heryanto, H., Armynah, B., Salah, H., Sulieman, A., Bradley, D. A., & Tahir, D. (2023). Physical, mechanical, optical, and gamma radiation shielding properties of the BaO-based glass system prepared by the melt-quench technique: A review. Radiation Physics and Chemistry, 111059.

DOI: 10.1016/j.radphyschem.2023.111059

Google Scholar

[13] Ehab, M., Salama, E., Ashour, A., Attallah, M., & Saleh, H. M. (2022). Optical properties and gamma radiation shielding capability of transparent barium borosilicate glass composite. Sustainability, 14(20), 13298.

DOI: 10.3390/su142013298

Google Scholar

[14] Karpuz, N. (2023). Radiation shielding properties of glass composition. Journal of Radiation Research and Applied Sciences, 16(4), 100689.

DOI: 10.1016/j.jrras.2023.100689

Google Scholar

[15] Stehle, C., Vira, C., Hogan, D., Feller, S., & Affatigato, M. (1998). Optical and physical properties of bismuth borate glasses related to structure. Physics and chemistry of glasses, 39(2), 83-86.

Google Scholar

[16] Alonizan, N., Hamad, M. K., Alwabsi, A., Dwaikat, N., Mhareb, M. H. A., Sayyed, M. I., Thabit, H. A., Alajerami, Y. S., & Makhadmeh, G. N. Optical Materials, 143(July), 114177 (2023).

DOI: 10.1016/j.optmat.2023.114177

Google Scholar

[17] Arvaneh, A., Asadi, A., & Hosseini, S. A. Progress in Nuclear Energy, 156 (2023).

Google Scholar

[18] Marzuki, A., Ariyanti, S., Alvyanti, F. A., & Indraningsih, F. Journal of Physics: Theories and Applications, 7(1), 84–94 (2023).

Google Scholar

[19] Humaid, M., Asad, J., Aboalatta, A., Shaat, S. K. K., Musleh, H., Ramadan, K., Alajerami, Y., & Aldahoudi, N. Construction and Building Materials, 375(March), 130896 (2023).

DOI: 10.1016/j.conbuildmat.2023.130896

Google Scholar

[20] Fausta, D.E., Marzuki, A., & Cari. Journal of Physics: Conference Series, 1511(1) (2020).

Google Scholar

[21] Al-Buriahi, M.S., & Rammah, Y. S. Radiation Physics and Chemistry, 170(August 2019), 108632 (2020).

Google Scholar

[22] Al-Hadeethi, Y., & Sayyed, M.I. Ceramics International, 46(5), 6136–6140 (2020).

Google Scholar

[23] Marzuki, A., Ega, F.D., & Saraswati, A. Materials Research Express, 9(2), 025203 (2022).

Google Scholar

[24] Jauhariyah, M.N.R., Cari, & Marzuki, A. Materials Science Forum, 864, 37–41 (2016).

Google Scholar

[25] Marzuki, A., Riyatun, Larasati, M., & Singgih, G. T. IOP Conference Series: Materials Science and Engineering, 675(1) (2019).

Google Scholar

[26] Saraswati, A., Marzuki, A., & Suryanti, V. Journal of Physics: Theories and Applications, 5(2), 51 (2021).

Google Scholar

[27] Ruamnikhom, R., Rajaramakrishna, R., Chaiphaksa, W., Cheewasukhanont, W., Intachai, N., Kothan, S., & Kaewkhao, J. Hazardous radiation protective glasses for medical and research laboratories. Heliyon, 9(9) (2023).

DOI: 10.1016/j.heliyon.2023.e19935

Google Scholar

[28] Vani, P., Vinitha, G., Sayyed, M.I., AlShammari, M.M., & Manikandan, N. Nuclear Engineering and Technology, 53(12), 4106–4113 (2021).

DOI: 10.1016/j.net.2021.06.009

Google Scholar

[29] Alharshan, G.A., Alrowaili, Z.A., Olarinoye, I.O., & Al-Buriahi, M.S. (2022). Holmium(III) oxide and its significant effects on the radiation shielding performance of P2O5 + B2O3 + ZnSO4 optical glasses. Optik, 261(March), 169188.

DOI: 10.1016/j.ijleo.2022.169188

Google Scholar

[30] Malidarre, R.B., & Akkurt, I. Radiation Physics and Chemistry, 212 (April 2022), 111174 (2023).

Google Scholar

[31] Mahmoud, K. M., & Rammah, Y. S. (2020). Investigation of gamma-ray shielding capability of glasses doped with Y, Gd, Nd, Pr and Dy rare earth using MCNP-5 code. Physica B: Condensed Matter, 577(August 2019), 411756.

DOI: 10.1016/j.physb.2019.411756

Google Scholar

[32] El-Moneim, A., Azooz, M. A., Hashem, H. A., Fayad, A. M., & Elwan, R. L. (2023). XRD, FTIR and ultrasonic investigations of cadmium lead bismuthate glasses. Scientific Reports, 13(1), 12788.

DOI: 10.1038/s41598-023-39489-5

Google Scholar

[33] Ahmed, A. A., & Mawlud, S. Q. (2023). Physical and optical properties of ternary lead-bismuth tellurite glass. Heliyon, 9(6), e16730.

DOI: 10.1016/j.heliyon.2023.e16730

Google Scholar

[34] AbuAlRoos, N. J., Azman, M. N., Amin, N. A. B., & Zainon, R. (2020). Tungsten-based material as promising new lead-free gamma radiation shielding material in nuclear medicine. Physica Medica, 78, 48-57.

DOI: 10.1016/j.ejmp.2020.08.017

Google Scholar

[35] Hu, X., Luo, Z., Liu, T., & Lu, A. (2017). Nd 3+-doped TeO 2–Bi 2 O 3–ZnO transparent glass ceramics for laser application at 1.06 μm. Applied Physics A, 123, 1-8.

DOI: 10.1007/s00339-017-0861-1

Google Scholar

[36] Ding, N., Diao, J., Zhang, D., Zheng, T., & Lv, J. (2020). Spectroscopic properties of Yb3+ and Nd3+ co-doped tellurite glass for 1.0 μm laser application. Ceramics International, 46(16), 25633-25637.

DOI: 10.1016/j.ceramint.2020.07.038

Google Scholar

[37] Lira, A., Vázquez, G. V., Camarillo, I., Caldiño, U., Orozco, J., Ruvalcaba, J. L., & Ortega, M. M. (2023). High laser performance of an Al3+ and Nd3+-codoping in sodium-borotellurite glass for NIR broadband laser application. Journal of Luminescence, 255, 119545.

DOI: 10.1016/j.jlumin.2022.119545

Google Scholar

[38] Marzuki, A., Zikri, R. A., Jauhariyah, M. N. R., & Fausta, D. E. (2021). Effect of Na2O/PbO substitution on physical and optical properties of Er3+-doped tellurite glasses. Journal of Physics: Conference Series, 1912(1).

DOI: 10.1088/1742-6596/1912/1/012038

Google Scholar

[39] Marzuki, A., Pramuda, A., & Fausta, D. E. (2020). Effect of Nd2O3 and Na2O concentration on physical and spectroscopic properties of TeO2–Bi2O3–ZnO–Na2O–Nd2O3 glasses. Materials Research Express, 7(6), 065201.

DOI: 10.1088/2053-1591/ab8b89

Google Scholar

[40] Alshamari, A., Mhareb, M.H.A., Alonizan N., Sayyed M.I., Dwaikat, N., Alrammah, I., Hamad, M. K., & Drmosh, Q. A. (2023). Gamma-ray-induced changes in the radiation shielding, structural, mechanical, and optical properties of borate, tellurite, and borotellurite glass systems modified with barium and bismuth oxide. Optik, 281(February), 170829.

DOI: 10.1016/j.ijleo.2023.170829

Google Scholar

[41] Shaalan, M., El-Damrawi, G., Hassan, A., & Misbah, M. H. (2021). Structural role of Nd 2 O 3 as a dopant material in modified borate glasses and glass ceramics. Journal of Materials Science: Materials in Electronics, 32, 12348-12357.

DOI: 10.1007/s10854-021-05866-x

Google Scholar

[42] Şakar, E., Özpolat, Ö. F., Alım, B., Sayyed, M. I., & Kurudirek, M. (2020). Phy-X/PSD: development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiation Physics and Chemistry, 166, 108496.

DOI: 10.1016/j.radphyschem.2019.108496

Google Scholar

[43] Almisned, G., Khattari, Z. Y., Rabaa, E., Rammah, Y. S., Sen Baykal, D., Kilic, G., Zakaly, H. M. H., Ene, A., & Tekin, H. O. (2023). Tailoring a symmetry for material properties of tellurite glasses through tungsten(vi) oxide addition: Mechanical properties and gamma-ray transmissions properties. Applied Rheology, 33(1).

DOI: 10.1515/arh-2022-0151

Google Scholar

[44] Dong, M. G., Agar, O., Tekin, H. O., Kilicoglu, O., Kaky, K. M., & Sayyed, M. I. (2019). A comparative study on gamma photon shielding features of various germanate glass systems. Composites Part B: Engineering, 165, 636-647.

DOI: 10.1016/j.compositesb.2019.02.022

Google Scholar

[45] Hussein, K. I., Alqahtani, M. S., Meshawi, A. A., Alzahrani, K. J., Zahran, H. Y., Alshehri, A. M., Yahia, I. S., Reben, M., & Yousef, E. S. (2022). Evaluation of the Radiation Shielding Properties of a Tellurite Glass System Modified with Sodium Oxide. Materials, 15(9).

DOI: 10.3390/ma15093172

Google Scholar