[1]
Kaur, P., Singh, K. J., Kurudirek, M., & Thakur, S. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 223, 117309 (2019).
DOI: 10.1016/j.saa.2019.117309
Google Scholar
[2]
Sayyed, M. I., Sadeq, M. S., Shaaban, K. S., El-Rehim, A. F. A., Ali, A. M., & Morshidy, H. Y. Optical Materials, 142(May), 114051 (2023).
DOI: 10.1016/j.optmat.2023.114051
Google Scholar
[3]
Sopapan, P., Jaiboon, O., Laopaiboon, R., Yenchai, C., Sriwunkum, C., Issarapanacheewin, S., Akharawutchayanon, T., & Yubonmhat, K. Nuclear Engineering and Technology, 55(9), 3441–3449 (2023).
DOI: 10.1016/j.net.2023.06.014
Google Scholar
[4]
Tijani, S. A., & Al-Hadeethi, Y. Ceramics International, 45(17), 23572–23577 (2019).
Google Scholar
[5]
Yasmin, S., Kamislioglu, M., & Sayyed, M. I. Optik, 274(November 2022), 170529 (2023).
Google Scholar
[6]
Zaid, M. H. M., Matori, K. A., Sidek, H. A. A., & Ibrahim, I. R. Nuclear Engineering and Technology, 53(4), 1323–1330 (2021).
Google Scholar
[7]
Kothan, S., Kaewkhao, J., Kim, H. J., Muangmala, W., Kiatwattanacharoen, S., Jumpee, C., & Kaewjaeng, S. Structural and radiation shielding properties of Dy3+ doped phosphate glasses. Journal of Physics: Conference Series, 1428(1) (2020).
DOI: 10.1088/1742-6596/1428/1/012016
Google Scholar
[8]
Tuieng, R.J., Cartmell, S.H., Kirwan, C.C., & Sherratt, M.J. Cells, 10(11), 1–25 (2021).
Google Scholar
[9]
Al-Buriahi, M. S. Radiation Physics and Chemistry, 207(February), 110875 (2023).
Google Scholar
[10]
Marzuki, A., Sasmi, T., Fausta, D. E., Harjana, H., Suryanti, V., & Kabalci, I. Radiation Physics and Chemistry, 205(September 2022), 110722 (2023).
DOI: 10.1016/j.radphyschem.2022.110722
Google Scholar
[11]
Kavaz, E., Ekinci, N., Tekin, H. O., Sayyed, M. I., Aygün, B., & Perişanoğlu, U. F. U. K. (2019). Estimation of gamma radiation shielding qualification of newly developed glasses by using WinXCOM and MCNPX code. Progress in nuclear energy, 115, 12-20.
DOI: 10.1016/j.pnucene.2019.03.029
Google Scholar
[12]
Ardiansyah, A., Heryanto, H., Armynah, B., Salah, H., Sulieman, A., Bradley, D. A., & Tahir, D. (2023). Physical, mechanical, optical, and gamma radiation shielding properties of the BaO-based glass system prepared by the melt-quench technique: A review. Radiation Physics and Chemistry, 111059.
DOI: 10.1016/j.radphyschem.2023.111059
Google Scholar
[13]
Ehab, M., Salama, E., Ashour, A., Attallah, M., & Saleh, H. M. (2022). Optical properties and gamma radiation shielding capability of transparent barium borosilicate glass composite. Sustainability, 14(20), 13298.
DOI: 10.3390/su142013298
Google Scholar
[14]
Karpuz, N. (2023). Radiation shielding properties of glass composition. Journal of Radiation Research and Applied Sciences, 16(4), 100689.
DOI: 10.1016/j.jrras.2023.100689
Google Scholar
[15]
Stehle, C., Vira, C., Hogan, D., Feller, S., & Affatigato, M. (1998). Optical and physical properties of bismuth borate glasses related to structure. Physics and chemistry of glasses, 39(2), 83-86.
Google Scholar
[16]
Alonizan, N., Hamad, M. K., Alwabsi, A., Dwaikat, N., Mhareb, M. H. A., Sayyed, M. I., Thabit, H. A., Alajerami, Y. S., & Makhadmeh, G. N. Optical Materials, 143(July), 114177 (2023).
DOI: 10.1016/j.optmat.2023.114177
Google Scholar
[17]
Arvaneh, A., Asadi, A., & Hosseini, S. A. Progress in Nuclear Energy, 156 (2023).
Google Scholar
[18]
Marzuki, A., Ariyanti, S., Alvyanti, F. A., & Indraningsih, F. Journal of Physics: Theories and Applications, 7(1), 84–94 (2023).
Google Scholar
[19]
Humaid, M., Asad, J., Aboalatta, A., Shaat, S. K. K., Musleh, H., Ramadan, K., Alajerami, Y., & Aldahoudi, N. Construction and Building Materials, 375(March), 130896 (2023).
DOI: 10.1016/j.conbuildmat.2023.130896
Google Scholar
[20]
Fausta, D.E., Marzuki, A., & Cari. Journal of Physics: Conference Series, 1511(1) (2020).
Google Scholar
[21]
Al-Buriahi, M.S., & Rammah, Y. S. Radiation Physics and Chemistry, 170(August 2019), 108632 (2020).
Google Scholar
[22]
Al-Hadeethi, Y., & Sayyed, M.I. Ceramics International, 46(5), 6136–6140 (2020).
Google Scholar
[23]
Marzuki, A., Ega, F.D., & Saraswati, A. Materials Research Express, 9(2), 025203 (2022).
Google Scholar
[24]
Jauhariyah, M.N.R., Cari, & Marzuki, A. Materials Science Forum, 864, 37–41 (2016).
Google Scholar
[25]
Marzuki, A., Riyatun, Larasati, M., & Singgih, G. T. IOP Conference Series: Materials Science and Engineering, 675(1) (2019).
Google Scholar
[26]
Saraswati, A., Marzuki, A., & Suryanti, V. Journal of Physics: Theories and Applications, 5(2), 51 (2021).
Google Scholar
[27]
Ruamnikhom, R., Rajaramakrishna, R., Chaiphaksa, W., Cheewasukhanont, W., Intachai, N., Kothan, S., & Kaewkhao, J. Hazardous radiation protective glasses for medical and research laboratories. Heliyon, 9(9) (2023).
DOI: 10.1016/j.heliyon.2023.e19935
Google Scholar
[28]
Vani, P., Vinitha, G., Sayyed, M.I., AlShammari, M.M., & Manikandan, N. Nuclear Engineering and Technology, 53(12), 4106–4113 (2021).
DOI: 10.1016/j.net.2021.06.009
Google Scholar
[29]
Alharshan, G.A., Alrowaili, Z.A., Olarinoye, I.O., & Al-Buriahi, M.S. (2022). Holmium(III) oxide and its significant effects on the radiation shielding performance of P2O5 + B2O3 + ZnSO4 optical glasses. Optik, 261(March), 169188.
DOI: 10.1016/j.ijleo.2022.169188
Google Scholar
[30]
Malidarre, R.B., & Akkurt, I. Radiation Physics and Chemistry, 212 (April 2022), 111174 (2023).
Google Scholar
[31]
Mahmoud, K. M., & Rammah, Y. S. (2020). Investigation of gamma-ray shielding capability of glasses doped with Y, Gd, Nd, Pr and Dy rare earth using MCNP-5 code. Physica B: Condensed Matter, 577(August 2019), 411756.
DOI: 10.1016/j.physb.2019.411756
Google Scholar
[32]
El-Moneim, A., Azooz, M. A., Hashem, H. A., Fayad, A. M., & Elwan, R. L. (2023). XRD, FTIR and ultrasonic investigations of cadmium lead bismuthate glasses. Scientific Reports, 13(1), 12788.
DOI: 10.1038/s41598-023-39489-5
Google Scholar
[33]
Ahmed, A. A., & Mawlud, S. Q. (2023). Physical and optical properties of ternary lead-bismuth tellurite glass. Heliyon, 9(6), e16730.
DOI: 10.1016/j.heliyon.2023.e16730
Google Scholar
[34]
AbuAlRoos, N. J., Azman, M. N., Amin, N. A. B., & Zainon, R. (2020). Tungsten-based material as promising new lead-free gamma radiation shielding material in nuclear medicine. Physica Medica, 78, 48-57.
DOI: 10.1016/j.ejmp.2020.08.017
Google Scholar
[35]
Hu, X., Luo, Z., Liu, T., & Lu, A. (2017). Nd 3+-doped TeO 2–Bi 2 O 3–ZnO transparent glass ceramics for laser application at 1.06 μm. Applied Physics A, 123, 1-8.
DOI: 10.1007/s00339-017-0861-1
Google Scholar
[36]
Ding, N., Diao, J., Zhang, D., Zheng, T., & Lv, J. (2020). Spectroscopic properties of Yb3+ and Nd3+ co-doped tellurite glass for 1.0 μm laser application. Ceramics International, 46(16), 25633-25637.
DOI: 10.1016/j.ceramint.2020.07.038
Google Scholar
[37]
Lira, A., Vázquez, G. V., Camarillo, I., Caldiño, U., Orozco, J., Ruvalcaba, J. L., & Ortega, M. M. (2023). High laser performance of an Al3+ and Nd3+-codoping in sodium-borotellurite glass for NIR broadband laser application. Journal of Luminescence, 255, 119545.
DOI: 10.1016/j.jlumin.2022.119545
Google Scholar
[38]
Marzuki, A., Zikri, R. A., Jauhariyah, M. N. R., & Fausta, D. E. (2021). Effect of Na2O/PbO substitution on physical and optical properties of Er3+-doped tellurite glasses. Journal of Physics: Conference Series, 1912(1).
DOI: 10.1088/1742-6596/1912/1/012038
Google Scholar
[39]
Marzuki, A., Pramuda, A., & Fausta, D. E. (2020). Effect of Nd2O3 and Na2O concentration on physical and spectroscopic properties of TeO2–Bi2O3–ZnO–Na2O–Nd2O3 glasses. Materials Research Express, 7(6), 065201.
DOI: 10.1088/2053-1591/ab8b89
Google Scholar
[40]
Alshamari, A., Mhareb, M.H.A., Alonizan N., Sayyed M.I., Dwaikat, N., Alrammah, I., Hamad, M. K., & Drmosh, Q. A. (2023). Gamma-ray-induced changes in the radiation shielding, structural, mechanical, and optical properties of borate, tellurite, and borotellurite glass systems modified with barium and bismuth oxide. Optik, 281(February), 170829.
DOI: 10.1016/j.ijleo.2023.170829
Google Scholar
[41]
Shaalan, M., El-Damrawi, G., Hassan, A., & Misbah, M. H. (2021). Structural role of Nd 2 O 3 as a dopant material in modified borate glasses and glass ceramics. Journal of Materials Science: Materials in Electronics, 32, 12348-12357.
DOI: 10.1007/s10854-021-05866-x
Google Scholar
[42]
Şakar, E., Özpolat, Ö. F., Alım, B., Sayyed, M. I., & Kurudirek, M. (2020). Phy-X/PSD: development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiation Physics and Chemistry, 166, 108496.
DOI: 10.1016/j.radphyschem.2019.108496
Google Scholar
[43]
Almisned, G., Khattari, Z. Y., Rabaa, E., Rammah, Y. S., Sen Baykal, D., Kilic, G., Zakaly, H. M. H., Ene, A., & Tekin, H. O. (2023). Tailoring a symmetry for material properties of tellurite glasses through tungsten(vi) oxide addition: Mechanical properties and gamma-ray transmissions properties. Applied Rheology, 33(1).
DOI: 10.1515/arh-2022-0151
Google Scholar
[44]
Dong, M. G., Agar, O., Tekin, H. O., Kilicoglu, O., Kaky, K. M., & Sayyed, M. I. (2019). A comparative study on gamma photon shielding features of various germanate glass systems. Composites Part B: Engineering, 165, 636-647.
DOI: 10.1016/j.compositesb.2019.02.022
Google Scholar
[45]
Hussein, K. I., Alqahtani, M. S., Meshawi, A. A., Alzahrani, K. J., Zahran, H. Y., Alshehri, A. M., Yahia, I. S., Reben, M., & Yousef, E. S. (2022). Evaluation of the Radiation Shielding Properties of a Tellurite Glass System Modified with Sodium Oxide. Materials, 15(9).
DOI: 10.3390/ma15093172
Google Scholar