Enhanced Electrochemical Performance of Aluminum-Air Batteries via Gallium Alloying

Article Preview

Abstract:

Aluminum-air batteries have gained significant attention due to their high theoretical energy density, cost-effectiveness, and environmental friendliness. However, challenges such as voltage drops and capacity losses from aluminum electrode corrosion necessitate innovative solutions. This study explores the use of neutral electrolytes and the alloying of aluminum with magnesium (Mg), tin (Sn), and gallium (Ga) to enhance battery performance. The electrochemical properties of Al-Mg-Sn-xGa alloys (x = 0, 0.1, 0.25, 0.45) were investigated. The addition of Ga reduced discharge potential and increased discharge capacity by dissolving the oxide film on the electrode surface. Potentiodynamic polarization tests and scanning electron microscopy confirmed the superior electrochemical properties of the Al-Mg-Sn-Ga (0.25 wt%) alloy. These findings suggest that a Ga content between 0.25 and 0.45 wt% is optimal for Al-Mg-Sn alloy-based aluminum-air batteries, providing insights for designing high-performance batteries.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

9-14

Citation:

Online since:

November 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Winter and R.J. Brodd: Chem. Rev. Vol. 104 (2004), p.4245

Google Scholar

[2] A.G. Olabi, E.T. Sayed, T. Wilberforce, A. Jamal, A.H. Alami, K. Elsaid, S.M.A. Rahman, S.K. Shah, and M.A. Abdelkareem: Energies Vol. 14 (2021), p.1421

DOI: 10.3390/en14217373

Google Scholar

[3] Z. Zhang, L. Xiong, S. Wang, Y. Xie, W. You, and X. Du: J. Power Sources Vol. 580 (2023), p.233

Google Scholar

[4] A. Poullikkas: Renew. Sust. Energ. Rev. Vol. 27 (2013), p.778

Google Scholar

[5] Y. Zhao, O. Pohl, A.I. Bhatt, G.E. Collis, P.J. Mahon, T. Rüther, and A.F. Hollenkamp: Sustain. Chem. Vol. 2 (2021), p.167

Google Scholar

[6] C. Wang, Y. Yu, J. Niu, Y. Liu, D. Bridges, X. Liu, J. Pooran, Y. Zhang, and A. Hu: Appl. Sci. Vol. 9 (2019), p.914

Google Scholar

[7] G. Girishkumar, B. McCloskey, A.C. Luntz, S. Swanson, and W. Wilcke: J. Phys. Chem. C. Vol. 1 (2010), p.2193

Google Scholar

[8] M.A. Rahman, X. Wang, and C. Wen: J. Electrochem. Soc. Vol. 160 (2013), p. A1759

Google Scholar

[9] M. Mokhtar, M.Z.M. Talib, E.H. Majlan, S.M. Tasirin, W.M.F.W. Ramli, W.R.W. Daud, and J. Sahari: J. Ind. Eng. Chem. Vol. 32 (2015), p.1

Google Scholar

[10] R. Buckingham, T. Asset, and P. Atanassov: J. Power Sources Vol. 498 (2021), p.229

Google Scholar

[11] T. Huong Pham, W.-H. Lee, and J.-G. Kim: J. Mol. Liq. Vol. 347 (2022), p.118

Google Scholar

[12] J. Ma, J. Wen, F. Ren, G. Wang, and Y. Xiong: J. Electrochem. Soc. Vol. 163 (2016), p. A1759

Google Scholar

[13] P. Wu, S. Wu, D. Sun, Y. Tang, and H. Wang: Acta Metall. Sin. (Engl. Lett.) Vol. 34 (2021), p.309

Google Scholar

[14] Z. Wu, H. Zhang, K. Qin, J. Zou, K. Qin, C. Ban, J. Cui, and H. Nagaumi: J. Mater. Sci. Vol. 55 (2020), p.11545

Google Scholar

[15] H. Moghanni-Bavil-Olyaei, J. Arjomandi, and M. Hosseini: J. Alloys Compd. Vol. 695 (2017), p.2637

Google Scholar

[16] Q. Wang, H. Miao, Y. Xue, S. Sun, S. Li, and Z. Liu: RSC Adv. Vol. 7 (2017), p.25838

Google Scholar