Preparation of Flower-Like Layered Double Hydroxides Supercapacitor Cathode Based on Biomineralization Strategy

Article Preview

Abstract:

Layered double hydroxides (LDHs) materials are widely used in the cathodes of high-performance supercapacitors. However, current preparation methods suffer from issues such as high energy consumption, complex processes, and significant safety hazards. In this study, based on a mild biomineralization reaction route, flower-like nano-sheet structured cobalt-based LDHs (COH) cathode was successfully prepared. The COH cathode achieved an outstanding specific capacitance of 829.0 F g-¹ at a current density of 1 A g-¹ and retained 90.9% of its initial capacitance after 4000 cycles. This biomineralization strategy holds promise for widespread application in the preparation of nanostructured electrode materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-8

Citation:

Online since:

November 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Wang, Wu X., Yuan X., Liu Z., Zhang Y., Fu L., Zhu Y., Zhou Q., Wu Y., Huang W. Chem. Soc. Rev. Vol. 46 (2017), pp.6816-6854

Google Scholar

[2] Q. Wang, O'Hare D. Chem. Rev. Vol. 112 (2012), pp.4124-4155

Google Scholar

[3] M. Fu, Chen W., Lei Y., Yu H., Lin Y., Terrones M. Adv. Mater. Vol. 35 (2023), p.2300940

Google Scholar

[4] R. Chen, Cai X., He X., Hong X., Liu Y., So J.-K., Wang B., Zhou Y., Cheng L., Shen Z.X. Chem. Eng. J. Vol. 484, (2024), p.149736

Google Scholar

[5] A. Farithkhan, John S.A. ACS Sustain Chem Eng. Vol. 10 (2022), pp.6952-6962

Google Scholar

[6] R.B. Waghmode, Maile N.C., Lee D.S., Torane A.P. Electrochim. Acta. Vol. 350 (2020), p.136413

Google Scholar

[7] W. Wang, Zhang N., Shi Z., Ye Z., Gao Q., Zhi M., Hong Z. Chem. Eng. J. Vol. 338 (2018), pp.55-61

Google Scholar

[8] X. Luo, Shao J., He P., Zhong M., Wang Q., Li K., Zhao W. Electrochim. Acta. Vol. 354 (2020), p.136679

Google Scholar

[9] Z. Chen, Ha Y., Jia H., Yan X., Chen M., Liu M., Wu R. Adv. Energy Mater. Vol. 9 (2019), p.1803918

Google Scholar

[10] H. Liang, Lin J., Jia H., Chen S., Qi J., Cao J., Lin T., Fei W., Feng J. J. Power Sources. Vol. 378 (2018), pp.248-254

Google Scholar

[11] X. Wang, Yan C., Sumboja A., Yan J., Lee P.S. Adv. Energy Mater. Vol. 4 (2014), p.1301240

Google Scholar

[12] R. Chen, Cai X., He X., Zhang T., Eldona C., Zhang Q., Cheng L., Shen Z.X. Chem. Eng. J. Vol. 488 (2024), p.150981

Google Scholar

[13] X. Wang, Lin Y., Su Y., Zhang B., Li C., Wang H., Wang L. Electrochim. Acta. Vol. 225 (2017), pp.263-271

Google Scholar

[14] R.T. Patil, Patil A.S., Dhas S.D., Wadakar N.B., Bhosale T.T., Fulari V.J. J. Mater. Sci.: Mater. Electron. Vol. 34 (2023), p.2297

DOI: 10.1007/s10854-023-11436-0

Google Scholar

[15] S. Ali Ansari, Parveen N., Al Saleh Al-Othoum M., Omaish Ansari M. J. Adv. Res. Vol. 50 (2023), pp.107-116

DOI: 10.1016/j.jare.2022.10.009

Google Scholar

[16] P.S. Gaikar, Navale S.T., Gaikwad S.L., Al-Osta A., Jadhav V.V. Arjunwadkar P.R., Naushad M., Mane R.S. Dalton Trans. Vol. 46 (2017), pp.3393-3399

DOI: 10.1039/c6dt04581b

Google Scholar

[17] X. Li, Lu L., Shen J., Li Z., Liu S. J. Power Sources. Vol.477 (2020), p.228974

Google Scholar

[18] K. Ding, Zhang X., Li J., Yang P., Cheng X. CrystEngComm. Vol. 19 (2017), pp.5780-5786

Google Scholar