Simulation of a Silicon Solar Cell Using Triple-Layer Anti-Reflection Coatings (ARC)

Article Preview

Abstract:

Considering solar energy is being used more and more frequently in recent years, numerous studies have been conducted in order to improve the performance of the solar cell. The application of anti-reflective coating (ARC) in the solar cell is one of the most effective techniques. It has been said that although single and double ARC layers are adequate, applying triple ARC layers would render them significantly more effective across a broad spectrum. Henceforth, in this study, different materials were recently designed to produce triple layers of ARC, which are SiO2/Si3N4/TiO2, SiO2/ZnO/TiO2, ZnO/Si3N4/TiO2, SiO2/Si3N4/ZnS, and SiO2/ZnO/ZnS, which are then applied in silicon solar cells using PC1D simulation software. The outcomes of the simulation included the analysis of the I-V curve, efficiency (ŋ), and reflection, in addition to the results for short circuit current (Isc), maximum power output (Pmax), open circuit voltage (Voc), and fill factor (FF), which have been compared to numerous other theoretical findings from other investigations and research projects. By that, the simulation revealed that SiO2/ZnO/TiO2 is the most suitable triple-layer ARC to be applied to a silicon solar cell, which exhibits the highest efficiency of 22.63% with an Isc of 3.967A, Pmax of 2.489W, a Voc of 0.7389V, and a fill factor of 84.91 at a wavelength of 400 nm.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

61-71

Citation:

Online since:

November 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. N. Castellano, R. M. G. Salvador, F. P. Rodriguez, M. Fernandez-Ros, J. A. G. Parra, Renewable energy: The future of photovoltaic energy, Living with Climate Change (2024) 373-396.

DOI: 10.1016/b978-0-443-18515-1.00002-2

Google Scholar

[2] M. Vimala, G. Ramadas, M. Perarasi, A. M. Manokar, R. Sathyamurthy, A review of different types of solar cell materials employed in bifacial solar photovoltaic panel, Energies 16 (2023) 3605.

DOI: 10.3390/en16083605

Google Scholar

[3] M. Di Sabatino, R. Hendawi, A. S. Garcia, Silicon Solar Cells: Trends, Manufacturing Challenges, and AI Perspectives, Crystals 14 (2024) 167.

DOI: 10.3390/cryst14020167

Google Scholar

[4] K. ElKhamisy, H. Abdelhamid, E. S. M. El-Rabaie, N. Abdel-Salam, A Comprehensive Survey of Silicon Thin-film Solar Cell: Challenges and Novel Trends, Plasmonics 19 (2024) 1-20.

DOI: 10.1007/s11468-023-01905-x

Google Scholar

[5] A. S. Budiman, D. N. N. Putri, H. Candra, E. Djuana, T. K. Sari, D. P.B. Aji, L.R. Putri, E. Sitepu, D. Speaks, T. Pasang, Crack Catcher AI–Enabling smart fracture mechanics approaches for damage control of thin silicon cells or wafers, Sol. Energy Mater. Sol. Cells 273 (2024) 112927.

DOI: 10.2139/ssrn.4696629

Google Scholar

[6] Adnan Shariah, Ma'in Bataineh, Electrical and structural properties of crystallized amorphous silicon thin films, Silicon 15 (2023) 2727-2735.

DOI: 10.1007/s12633-022-02208-2

Google Scholar

[7] R. Sharma, Design and Simulation of Triple Layer Antireflection Coating for Silicon Solar Cells, Int. J. Emerg. 10 (2022) 167–170.

DOI: 10.30534/ijeter/2022/051032022

Google Scholar

[8] N. Shanmugam, R. Pugazhendhi, R. M. Elavarasan, P. Kasiviswanathan, N. Das, Anti-reflective coating materials: A holistic review from PV perspective, Energies 13 (2020) 1–93.

DOI: 10.3390/en13102631

Google Scholar

[9] D. Poitras, J. A. Dobrowolski, Toward perfect antireflection coatings. 2. Theory, Appl. Opt. 43 (2004) 1286-1295.

DOI: 10.1364/ao.43.001286

Google Scholar

[10] B. G. Priyadashini, A. K. Sharma, Design of multi-layer anti-reflection coating for terrestrial solar panel glass, Bull. Mater. Sci. 39 (2016) 683–689.

DOI: 10.1007/s12034-016-1195-x

Google Scholar

[11] G. Hashmi, M. J. Rashid, Z. H. Mahmood, M. Hoq, M. H. Rahman, Investigation of the impact of different ARC layers using PC1D simulation: application to crystalline silicon solar cells, J. Theor. Appl. Phys. 12 (2018) 327–334.

DOI: 10.1007/s40094-018-0313-0

Google Scholar

[12] D. Kc, D. K. Shah, A. M. Alanazi, M. S. Akhtar, Impact of Different Antireflection Layers on Cadmium Telluride (CdTe) Solar Cells: a PC1D Simulation Study, J. Electron. Mater. 50 (2021) 2199–2205.

DOI: 10.1007/s11664-020-08696-5

Google Scholar

[13] A. M. Mandong, A. Uzum, Fresnel calculations of double/multi-layer antireflection coatings on silicon substrates, Res. Eng. Struct. Mat. 7 (2021) 539–550.

DOI: 10.17515/resm2020.241en1217

Google Scholar

[14] R. Stieglitz, W. Platzer, Optical Conversion, in: Solar Thermal Energy Systems: Fundamentals, Technology, Applications, Springer International Publishing, Cham, (2024)121-242.

DOI: 10.1007/978-3-031-43173-9_3

Google Scholar

[15] S. Arya, P. Mahajan, Silicon-Based Solar Cells, in: Solar Cells: Types and Applications, Springer Nature Singapore, Singapore, (2023) 37-76.

DOI: 10.1007/978-981-99-7333-0_2

Google Scholar

[16] A. Chaudhari, A. Kumar, S. Kumar, S. Kushwaha, Synthesis of TiO2 Nanoparticles by Green Approach: Application as Photoanode for Dye-Sensitized Solar Cells, Mater. Res. Bull. (2024) 112909.

DOI: 10.1016/j.materresbull.2024.112909

Google Scholar

[17] M. N. Aida, M. Q. Khokhar, R. U. Rahman, H. Yousuf, P. C. Madara, J. A. Jony, ... J. Yi, Optimizing the metallization process for high fill factor of n-type crystalline silicon TOPCon solar cells, Inorg. Chem. Commun. (2024) 112627.

DOI: 10.1016/j.inoche.2024.112627

Google Scholar

[18] M. Belarbi, A. Benyoucef, B. Benyoucef, Simulation of the Solar Cells With PC1D, Application To Cells Based on Silicon, Adv. Energy Inter. J. 1 (2014) 1–10.

Google Scholar

[19] M. Subramanian, O. M. Aldossary, M. Alam, M. Ubaidullah, S. Gedi, L. Vaduganathan, G. S. Thirunavukkarasu, E. Jamei, M. Seyedmahmoudian, A. Stojcevski, S. Mekhilef, Optimization of antireflection coating design using pc1d simulation for c–si solar cell application, Electronics 10 (2021) 24.

DOI: 10.3390/electronics10243132

Google Scholar

[20] C. S. Solanki, B. M. Arora, J. Vasi, M. B. Patil, Solar Cell Simulation Using PC1D Simulator, Solar Photovoltaics (2013) 130–146.

DOI: 10.1017/9789382993254.017

Google Scholar

[21] C. Chung, B. T. Tran, K. Lin, Y. Ho, H. Yu, N. Quan, M. Moradi, Z. Rajabi, Y. D. Kim, J.-H. Shina, K. S. Ohb, J. C. Leeb, Heon Leea, S. Chhajed, M. F. Schubert, J. K. Kim, E. F. Schubert, Efficiency Enhancement of Si Solar Cells by Using Nanostructured Single and Double Layer Anti-Reflective Coatings, J. Nanostruct 3 (2014) 365–369.

Google Scholar

[22] H. Asghar, T. Riaz, H. A. Mannan, S. M. Khan, O. M. Butt, Rheology and modeling insights into dye-sensitized solar cells (DSSCs) material: Bridging the gap to solar energy advancements, Renew. Sustain. Energy Rev. 193 (2024) 114298.

DOI: 10.1016/j.rser.2024.114298

Google Scholar

[23] D. Gogoi, M. K. Hossain, T. D. Das, G. F. Toki, M. D. Albaqami, S. Mohammad, M. R. Mohammad, Performance analysis of highly efficient lead-free perovskite solar cells: a numerical insight, J. Opt. (2024) 1-12.

DOI: 10.1007/s12596-024-01880-4

Google Scholar

[24] S. Chen, Y. A. Ye, M. Ishaq, D. L. Ren, P. Luo, K. W. Wu, ... G. X. Liang, Simultaneous Band Alignment Modulation and Carrier Dynamics Optimization Enable Highest Efficiency in Cd-Free Sb2Se3 Solar Cells, Adv. Funct. Mater. (2024) 2403934.

DOI: 10.1002/adfm.202403934

Google Scholar