[1]
N. N. Castellano, R. M. G. Salvador, F. P. Rodriguez, M. Fernandez-Ros, J. A. G. Parra, Renewable energy: The future of photovoltaic energy, Living with Climate Change (2024) 373-396.
DOI: 10.1016/b978-0-443-18515-1.00002-2
Google Scholar
[2]
M. Vimala, G. Ramadas, M. Perarasi, A. M. Manokar, R. Sathyamurthy, A review of different types of solar cell materials employed in bifacial solar photovoltaic panel, Energies 16 (2023) 3605.
DOI: 10.3390/en16083605
Google Scholar
[3]
M. Di Sabatino, R. Hendawi, A. S. Garcia, Silicon Solar Cells: Trends, Manufacturing Challenges, and AI Perspectives, Crystals 14 (2024) 167.
DOI: 10.3390/cryst14020167
Google Scholar
[4]
K. ElKhamisy, H. Abdelhamid, E. S. M. El-Rabaie, N. Abdel-Salam, A Comprehensive Survey of Silicon Thin-film Solar Cell: Challenges and Novel Trends, Plasmonics 19 (2024) 1-20.
DOI: 10.1007/s11468-023-01905-x
Google Scholar
[5]
A. S. Budiman, D. N. N. Putri, H. Candra, E. Djuana, T. K. Sari, D. P.B. Aji, L.R. Putri, E. Sitepu, D. Speaks, T. Pasang, Crack Catcher AI–Enabling smart fracture mechanics approaches for damage control of thin silicon cells or wafers, Sol. Energy Mater. Sol. Cells 273 (2024) 112927.
DOI: 10.2139/ssrn.4696629
Google Scholar
[6]
Adnan Shariah, Ma'in Bataineh, Electrical and structural properties of crystallized amorphous silicon thin films, Silicon 15 (2023) 2727-2735.
DOI: 10.1007/s12633-022-02208-2
Google Scholar
[7]
R. Sharma, Design and Simulation of Triple Layer Antireflection Coating for Silicon Solar Cells, Int. J. Emerg. 10 (2022) 167–170.
DOI: 10.30534/ijeter/2022/051032022
Google Scholar
[8]
N. Shanmugam, R. Pugazhendhi, R. M. Elavarasan, P. Kasiviswanathan, N. Das, Anti-reflective coating materials: A holistic review from PV perspective, Energies 13 (2020) 1–93.
DOI: 10.3390/en13102631
Google Scholar
[9]
D. Poitras, J. A. Dobrowolski, Toward perfect antireflection coatings. 2. Theory, Appl. Opt. 43 (2004) 1286-1295.
DOI: 10.1364/ao.43.001286
Google Scholar
[10]
B. G. Priyadashini, A. K. Sharma, Design of multi-layer anti-reflection coating for terrestrial solar panel glass, Bull. Mater. Sci. 39 (2016) 683–689.
DOI: 10.1007/s12034-016-1195-x
Google Scholar
[11]
G. Hashmi, M. J. Rashid, Z. H. Mahmood, M. Hoq, M. H. Rahman, Investigation of the impact of different ARC layers using PC1D simulation: application to crystalline silicon solar cells, J. Theor. Appl. Phys. 12 (2018) 327–334.
DOI: 10.1007/s40094-018-0313-0
Google Scholar
[12]
D. Kc, D. K. Shah, A. M. Alanazi, M. S. Akhtar, Impact of Different Antireflection Layers on Cadmium Telluride (CdTe) Solar Cells: a PC1D Simulation Study, J. Electron. Mater. 50 (2021) 2199–2205.
DOI: 10.1007/s11664-020-08696-5
Google Scholar
[13]
A. M. Mandong, A. Uzum, Fresnel calculations of double/multi-layer antireflection coatings on silicon substrates, Res. Eng. Struct. Mat. 7 (2021) 539–550.
DOI: 10.17515/resm2020.241en1217
Google Scholar
[14]
R. Stieglitz, W. Platzer, Optical Conversion, in: Solar Thermal Energy Systems: Fundamentals, Technology, Applications, Springer International Publishing, Cham, (2024)121-242.
DOI: 10.1007/978-3-031-43173-9_3
Google Scholar
[15]
S. Arya, P. Mahajan, Silicon-Based Solar Cells, in: Solar Cells: Types and Applications, Springer Nature Singapore, Singapore, (2023) 37-76.
DOI: 10.1007/978-981-99-7333-0_2
Google Scholar
[16]
A. Chaudhari, A. Kumar, S. Kumar, S. Kushwaha, Synthesis of TiO2 Nanoparticles by Green Approach: Application as Photoanode for Dye-Sensitized Solar Cells, Mater. Res. Bull. (2024) 112909.
DOI: 10.1016/j.materresbull.2024.112909
Google Scholar
[17]
M. N. Aida, M. Q. Khokhar, R. U. Rahman, H. Yousuf, P. C. Madara, J. A. Jony, ... J. Yi, Optimizing the metallization process for high fill factor of n-type crystalline silicon TOPCon solar cells, Inorg. Chem. Commun. (2024) 112627.
DOI: 10.1016/j.inoche.2024.112627
Google Scholar
[18]
M. Belarbi, A. Benyoucef, B. Benyoucef, Simulation of the Solar Cells With PC1D, Application To Cells Based on Silicon, Adv. Energy Inter. J. 1 (2014) 1–10.
Google Scholar
[19]
M. Subramanian, O. M. Aldossary, M. Alam, M. Ubaidullah, S. Gedi, L. Vaduganathan, G. S. Thirunavukkarasu, E. Jamei, M. Seyedmahmoudian, A. Stojcevski, S. Mekhilef, Optimization of antireflection coating design using pc1d simulation for c–si solar cell application, Electronics 10 (2021) 24.
DOI: 10.3390/electronics10243132
Google Scholar
[20]
C. S. Solanki, B. M. Arora, J. Vasi, M. B. Patil, Solar Cell Simulation Using PC1D Simulator, Solar Photovoltaics (2013) 130–146.
DOI: 10.1017/9789382993254.017
Google Scholar
[21]
C. Chung, B. T. Tran, K. Lin, Y. Ho, H. Yu, N. Quan, M. Moradi, Z. Rajabi, Y. D. Kim, J.-H. Shina, K. S. Ohb, J. C. Leeb, Heon Leea, S. Chhajed, M. F. Schubert, J. K. Kim, E. F. Schubert, Efficiency Enhancement of Si Solar Cells by Using Nanostructured Single and Double Layer Anti-Reflective Coatings, J. Nanostruct 3 (2014) 365–369.
Google Scholar
[22]
H. Asghar, T. Riaz, H. A. Mannan, S. M. Khan, O. M. Butt, Rheology and modeling insights into dye-sensitized solar cells (DSSCs) material: Bridging the gap to solar energy advancements, Renew. Sustain. Energy Rev. 193 (2024) 114298.
DOI: 10.1016/j.rser.2024.114298
Google Scholar
[23]
D. Gogoi, M. K. Hossain, T. D. Das, G. F. Toki, M. D. Albaqami, S. Mohammad, M. R. Mohammad, Performance analysis of highly efficient lead-free perovskite solar cells: a numerical insight, J. Opt. (2024) 1-12.
DOI: 10.1007/s12596-024-01880-4
Google Scholar
[24]
S. Chen, Y. A. Ye, M. Ishaq, D. L. Ren, P. Luo, K. W. Wu, ... G. X. Liang, Simultaneous Band Alignment Modulation and Carrier Dynamics Optimization Enable Highest Efficiency in Cd-Free Sb2Se3 Solar Cells, Adv. Funct. Mater. (2024) 2403934.
DOI: 10.1002/adfm.202403934
Google Scholar