Improvement of Fatigue Characteristics of Friction Stir Welded A6061-T6 Applying Shot Peening

Article Preview

Abstract:

Recently, researchers have developed the method as a harmless the crack by the surface modification. For the purpose of contributing to reliability improvement of the A6061-T6 structure by harmless method, the following research was carried out: The tensile residual stress of friction stir welding was added by shot peening, resulting in a more significant compressive residual stress than that of the base metal. The effect of the surface crack aspect ratio on the maximum harmless crack depth (ahml) of A6061-T6 was evaluated for residual stress distribution. The detectable depth was evaluated in the relationship between ahml and the maximum detectable crack depth (aNDI) by non-destructive inspection (NDI).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

75-86

Citation:

Online since:

November 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] ASME B&PV Code Section XI. Rules for in-service inspection of nuclear power plant components. 2013.

Google Scholar

[2] API 579-1/ASME FFS-1. Recommended practice for fitness-for-service, American Petroleum Institute. 2021.

Google Scholar

[3] Japan Welding Society Standard WES2805-1997. Evaluation method of defects for brittle fracture initiation and fatigue crack growth of welded joints. Japan Welding Association. 1997.

Google Scholar

[4] HPIS Z 101-1. Method for evaluating crack-like defects in pressure equipment. Japan High Pressure Technology Association. 2008.

Google Scholar

[5] JSME S NA1-2008, 2009, 2010. Nuclear power equipment standards for power generation and maintenance. Japan Society of Mechanical Engineers.

Google Scholar

[6] I, Huther, F, Lefebvre, B, Abdellaoui, V, Leray, Procedia Structural Integrity. 38 (2022) 466-476.

DOI: 10.1016/j.prostr.2022.03.047

Google Scholar

[7] G. Kiia, A. Antti, R. Jani, P. Tero, L. Kalle, B. Timo, Weld World. 68 (2024) 411-425.

Google Scholar

[8] Z. Chen, Y. Dai, Y. Liu, International Journal of Fatigue, 186 (2024) 108382.

Google Scholar

[9] M. Nakagawa, K. Takahashi, T. Osada, H. Okada, H. Koike, Transactions of JSSE. 59 (2014) 13-18.

Google Scholar

[10] D.J. Chadwick, S. Ghanbari, D.F. Bahr, M.D.C. Sangid, Fatigue & Fracture of Engineering Materials & Structures. Vol. 41 (2018) 71-83.

Google Scholar

[11] P. Yella, K.V. Rajulapati, G.V. Prasad Reddy, R. Sandhya, P. Prem Kiran, R.K. Buddu, K. Bhanu Sankara Rao, International Journal of Pressure Vessels and Piping. Vol. 176 (2019) 103972.

DOI: 10.1016/j.ijpvp.2019.103972

Google Scholar

[12] J. Zhang, H. Li, B. Yang, B. Wu, S. Zhu, International Journal of Fatigue. 132 (2020) 105379.

Google Scholar

[13] M. Nakamura, K. Takahashi, Y. Saito, Journal of Materials Engineering and Performance. 32 (2023) 1589-1600.

Google Scholar

[14] T. Tsuji, M. Fujino, K. Takahashi, Metals. 13 (2023) 42.

Google Scholar

[15] T. Osada, T. Hara, M. Mitome, S. Ozaki, T. Abe, K. Kamoda, T. Ohmura, Science and Technology of Advanced Materials. 21 (2020) 593-608.

DOI: 10.1080/14686996.2020.1796468

Google Scholar

[16] B. Wang, R. Tu, Y. Wei, H. Cai, Materials (Basel). 15 (2022) 652.

Google Scholar

[17] N.E. Uzan, S. Ramati, R. Shneck, N. Frage, O. Yeheskel, Additive Manufacturing. 21 (2018) 458-464.

DOI: 10.1016/j.addma.2018.03.030

Google Scholar

[18] L. Wang, L. Zhou, L. Liu, W. He, X. Pan, X. Nie, S. Luo, International Journal of Fatigue. 155 (2022) 106581.

Google Scholar

[19] P. Erdogan, E.S. Ibrahim, Fatigue & Fracture of Engineering Materials & Structures. 47 (2024) 240-253.

Google Scholar

[20] K. Ando, M.H. Kim, K.W. Nam, Fatigue & Fracture of Engineering Materials & Structures. 44 (2021) 306-316.

Google Scholar

[21] J.C. Newman Jr, I.S. Raju, Engineering Fracture Mechanics. 15 (1981) 185-192.

Google Scholar

[22] S.H. Park, K.H. Gu, G.H. Lee, K.W. Nam, Trans. Korean Soc. Mech. Eng. A. 47 (2023) 417-425.

Google Scholar

[23] H. Okada, A. Tange, K. Ando, Journal of High Pressure Institute of Japan. 41 (2003) 233-242.

Google Scholar

[24] F. Takahashi, A. Tange, K. Ando, Transactions of Japan Society of Spring Engineers. 53 (2008) 1-8.

Google Scholar

[25] K. Takahashi, T. Hayashi, K. Ando, F. Takahashi, Transactions of Japan Society of Spring Engineers. 55 (2010) 25-30.

Google Scholar

[26] Y. Murakami, JSME International Journal. 32 (1989) 167-180.

Google Scholar

[27] K.H. Gu, G.H. Lee, C.S. Oh, K.W. Nam, MRS Advances. 7 (2022) 811-817.

Google Scholar