[1]
ASME B&PV Code Section XI. Rules for in-service inspection of nuclear power plant components. 2013.
Google Scholar
[2]
API 579-1/ASME FFS-1. Recommended practice for fitness-for-service, American Petroleum Institute. 2021.
Google Scholar
[3]
Japan Welding Society Standard WES2805-1997. Evaluation method of defects for brittle fracture initiation and fatigue crack growth of welded joints. Japan Welding Association. 1997.
Google Scholar
[4]
HPIS Z 101-1. Method for evaluating crack-like defects in pressure equipment. Japan High Pressure Technology Association. 2008.
Google Scholar
[5]
JSME S NA1-2008, 2009, 2010. Nuclear power equipment standards for power generation and maintenance. Japan Society of Mechanical Engineers.
Google Scholar
[6]
I, Huther, F, Lefebvre, B, Abdellaoui, V, Leray, Procedia Structural Integrity. 38 (2022) 466-476.
DOI: 10.1016/j.prostr.2022.03.047
Google Scholar
[7]
G. Kiia, A. Antti, R. Jani, P. Tero, L. Kalle, B. Timo, Weld World. 68 (2024) 411-425.
Google Scholar
[8]
Z. Chen, Y. Dai, Y. Liu, International Journal of Fatigue, 186 (2024) 108382.
Google Scholar
[9]
M. Nakagawa, K. Takahashi, T. Osada, H. Okada, H. Koike, Transactions of JSSE. 59 (2014) 13-18.
Google Scholar
[10]
D.J. Chadwick, S. Ghanbari, D.F. Bahr, M.D.C. Sangid, Fatigue & Fracture of Engineering Materials & Structures. Vol. 41 (2018) 71-83.
Google Scholar
[11]
P. Yella, K.V. Rajulapati, G.V. Prasad Reddy, R. Sandhya, P. Prem Kiran, R.K. Buddu, K. Bhanu Sankara Rao, International Journal of Pressure Vessels and Piping. Vol. 176 (2019) 103972.
DOI: 10.1016/j.ijpvp.2019.103972
Google Scholar
[12]
J. Zhang, H. Li, B. Yang, B. Wu, S. Zhu, International Journal of Fatigue. 132 (2020) 105379.
Google Scholar
[13]
M. Nakamura, K. Takahashi, Y. Saito, Journal of Materials Engineering and Performance. 32 (2023) 1589-1600.
Google Scholar
[14]
T. Tsuji, M. Fujino, K. Takahashi, Metals. 13 (2023) 42.
Google Scholar
[15]
T. Osada, T. Hara, M. Mitome, S. Ozaki, T. Abe, K. Kamoda, T. Ohmura, Science and Technology of Advanced Materials. 21 (2020) 593-608.
DOI: 10.1080/14686996.2020.1796468
Google Scholar
[16]
B. Wang, R. Tu, Y. Wei, H. Cai, Materials (Basel). 15 (2022) 652.
Google Scholar
[17]
N.E. Uzan, S. Ramati, R. Shneck, N. Frage, O. Yeheskel, Additive Manufacturing. 21 (2018) 458-464.
DOI: 10.1016/j.addma.2018.03.030
Google Scholar
[18]
L. Wang, L. Zhou, L. Liu, W. He, X. Pan, X. Nie, S. Luo, International Journal of Fatigue. 155 (2022) 106581.
Google Scholar
[19]
P. Erdogan, E.S. Ibrahim, Fatigue & Fracture of Engineering Materials & Structures. 47 (2024) 240-253.
Google Scholar
[20]
K. Ando, M.H. Kim, K.W. Nam, Fatigue & Fracture of Engineering Materials & Structures. 44 (2021) 306-316.
Google Scholar
[21]
J.C. Newman Jr, I.S. Raju, Engineering Fracture Mechanics. 15 (1981) 185-192.
Google Scholar
[22]
S.H. Park, K.H. Gu, G.H. Lee, K.W. Nam, Trans. Korean Soc. Mech. Eng. A. 47 (2023) 417-425.
Google Scholar
[23]
H. Okada, A. Tange, K. Ando, Journal of High Pressure Institute of Japan. 41 (2003) 233-242.
Google Scholar
[24]
F. Takahashi, A. Tange, K. Ando, Transactions of Japan Society of Spring Engineers. 53 (2008) 1-8.
Google Scholar
[25]
K. Takahashi, T. Hayashi, K. Ando, F. Takahashi, Transactions of Japan Society of Spring Engineers. 55 (2010) 25-30.
Google Scholar
[26]
Y. Murakami, JSME International Journal. 32 (1989) 167-180.
Google Scholar
[27]
K.H. Gu, G.H. Lee, C.S. Oh, K.W. Nam, MRS Advances. 7 (2022) 811-817.
Google Scholar