Mechanical Properties of Concrete Blended with Rice Husk Ash, Oyster Shell Powder, and Ferrous Powder

Article Preview

Abstract:

Due to emerging global environmental awareness, the increasing demand on synthesizing green materials for structural purposes became prevalent. This study utilized agricultural, aquacultural, and industrial waste as partial replacement for fine aggregates in concrete. One standard and six concrete samples with various proportions (20% and 40%) of rice husk ash (RHA), oyster shell powder (OSP), and ferrous powder (FeP) were constructed and tested for their mechanical properties (i.e., compressive and split tensile strength). The samples containing 20% and 40% FeP attained the highest compressive (22.71 MPa) and split tensile strength (1.379 MPa), respectively, which are closest to the control, M25 grade concrete (C-M25), (23.87 MPa), and (1.44 MPa), respectively. Concrete fracture analysis indicated that the cylinders were well constructed as implied by the fracture types. The C-FeP is the best concrete mixture attaining superior compressive and split tensile strength values.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

117-123

Citation:

Online since:

November 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Bolden, T. Abu-Lebdeh, and E. Fini: Am. J. Environ. Sci. Vol. 9, no. 1 (2013), p.14–24.

Google Scholar

[2] H. M. Hamada, B. A. Tayeh, A. Al-Attar, F. M. Yahaya, K. Muthusamy, and A. M. Humada: J. Build. Eng. Vol. 32 (2020) p.101583.

DOI: 10.1016/j.jobe.2020.101583

Google Scholar

[3] A. Rehman, K. A. Khan, T. Hamid, H. Nasir, I. Ahmad, and M. Alam: Civ. Eng. J. Vol. 6, no. 2 (2020), p.238–257.

Google Scholar

[4] H. Song, A. Ahmad, K. A. Ostrowski, and M. Dudek: Materials (Basel) Vol. 14, no. 16 (2021), p.4518.

Google Scholar

[5] P. Shafigh, H. Bin Mahmud, M. Z. Jumaat, and M. Zargar: Constr. Build. Mater. Vol. 53 (2014), p.110–117.

Google Scholar

[6] M. I. Albiajawi, R. Embong, and K. Muthusamy: Mater. Today Proc. Vol. 48 (2022), p.778–783.

Google Scholar

[7] S. Luhar, T. W. Cheng, and I. Luhar: Compos. Part B Eng. Vol. 175 (2019), p.107076.

Google Scholar

[8] J. Zhan, J. Lu, and D. Wang: Rev. Aquac. Vol. 14, no. 1 (2022), p.477–488.

Google Scholar

[9] N. Saikia and J. De Brito: Constr. Build. Mater. Vol. 34 (2012), p.385–401.

Google Scholar

[10] S. Bahij, S. Omary, F. Feugeas, and A. Faqiri: Waste Manag. Vol. 113 (2020), p.157–175.

DOI: 10.1016/j.wasman.2020.05.048

Google Scholar

[11] K. Kishore and N. Gupta: Mater. Today Proc. Vol. 26 (2020), p.2926–2931.

Google Scholar

[12] M. M. Attia, B. A. Abdelsalam, M. Amin, I. S. Agwa, and M. F. Abdelmagied: Buildings Vol. 12, no. 8 (2022), p.1120.

Google Scholar

[13] N. Chand, P. Sharma, and M. Fahim: Wear Vol. 269, no. 11–12 (2010), p.847–853.

Google Scholar

[14] K. Sakr: J. Mater. Civ. Eng. Vol. 18, no. 3 (2006), p.367–376.

Google Scholar

[15] I. S. Mustafa, N. N. Razali, A. Ibrahim, N. Yahaya, and H. M. Kamari: J. Intelek Vol. 9, no. 2 (2016), pp.1-6.

Google Scholar

[16] F. R. P. Plando, M. B. Z. Gili, and J. T. Maquiling: Radiat. Phys. Chem. Vol. 208 (2023), p.110916.

Google Scholar

[17] I. Y. Hakeem, I. S. Agwa, B. A. Tayeh, and M. H. Abd-Elrahman: Case Stud. Constr. Mater. Vol. 17 (2022), p. e01486.

Google Scholar

[18] A. Naqi, S. Siddique, H. K. Kim, and J. G. Jang: Constr. Build. Mater. Vol. 230 (2020), p.116973.

Google Scholar

[19] S. Liu, Y. Zhang, B. Liu, Z. Zou, Q. Liu, Y. Teng, and L. V. Zhang: Materials (Basel). Vol. 15, no. 14 (2022), p.4886.

Google Scholar

[20] H. N. Ruslan, K. Muthusamy, S. M. Syed Mohsin, R. Jose, and R. Omar: Mater. Today Proc. Vol. 48 (2022), p.713–719.

DOI: 10.1016/j.matpr.2021.02.208

Google Scholar

[21] ASTM International, "C31/C31M - Standard Specification for Making and Curing Concrete Test Specimens in the Field," in Annual Book of ASTM Standards, Vol. 04:01, West Conshohocken, PA, 2019, p.1–6.

Google Scholar

[22] ASTM International, "C39/C39M Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens," West Conshohocken, PA, 2016. Information on https://www.astm.org/c0039_c0039m-16.html

Google Scholar

[23] ASTM International, "C496/C496M Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens," West Conshohocken, PA, 2017. Information on https://www.astm.org/c0496_c0496m-17.html

Google Scholar