The Effect of Thermo-Oxidative Aging on Properties of Thermoplastic Starch Biocomposites Films

Article Preview

Abstract:

The non-biodegradable and non-renewable nature of synthetic plastics poses a long-term threat to ecosystems, contributing to environmental pollution and depletion of natural resources. Thermoplastic starch (TPS) is a biodegradable biopolymer and has been identified as one of the best alternatives to replace synthetic polymers, especially in packaging application. In this study, hybrid inorganic/organic fillers were incorporated into the TPS to form hybrid biocomposites films that performed better performance compared to the neat TPS. Oil palm empty fruit bunch (OP) and dolomite (DO) were combined to form the hybrid fillers of the TPS biocomposites in the ratio of 1:4, 2:3, 3:2 and 4:1. Neat TPS was also prepared as control sample. The effect of thermo-oxidative aging on the mechanical properties of all the samples was evaluated. The structure of all samples was assessed using. X-ray Diffraction analysis (XRD) and X-ray Fluorescent (XRF). Based on the results, the TPS films with the hybrid fillers exhibited 61 % increment in tensile strength compared to the neat TPS films. In this study, OP4DO1 is best loading of the hybrid fillers to incorporated in TPS matrix as it achieved the highest value of tensile strength (5.61 MPa), modulus of elasticity (66.13 MPa) and elongation at break (59.93 %). Apparently, this study demonstrates a significant improvement in the tensile properties of the TPS when incorporated with these OP/DO hybrid fillers, thus indicate the potential of utilizing this TPS hybrid biocomposite in packaging applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

13-23

Citation:

Online since:

December 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Phothisarattana, D., & Harnkarnsujarit, N. (2022). Migration, aggregations and thermal degradation behaviors of TiO2 and ZnO incorporated PBAT/TPS nanocomposite blown films. Food Packaging and Shelf Life, 33, 100901.

DOI: 10.1016/j.fpsl.2022.100901

Google Scholar

[2] Ferreira, D. C., Molina, G., & Pelissari, F. M. (2020). Biodegradable trays based on cassava starch blended with agroindustrial residues. Composites Part B: Engineering, 183, 107682.

DOI: 10.1016/j.compositesb.2019.107682

Google Scholar

[3] Domene-López, D., Delgado-Marín, J. J., Martin-Gullon, I., García-Quesada, J. C., & Montalbán, M. G. (2019). Comparative study on properties of starch films obtained from potato, corn and wheat using 1-ethyl-3-methylimidazolium acetate as plasticizer. International journal of biological macromolecules, 135, 845-854.

DOI: 10.1016/j.ijbiomac.2019.06.004

Google Scholar

[4] Zhang, Y., Rempel, C., & Liu, Q. (2014). Thermoplastic starch processing and characteristics-a review. Critical reviews in food science and nutrition, 54(10), 1353-1370.

DOI: 10.1080/10408398.2011.636156

Google Scholar

[5] Osman, A.F., Siah, L., Alrashdi, A. A., Ul-Hamid, A., & Ibrahim, I. (2021). Improving the tensile and tear properties of thermoplastic starch/dolomite biocomposite film through sonication process. Polymers, 13(2), 274.

DOI: 10.3390/polym13020274

Google Scholar

[6] Omran, A.A.B., Mohammed, A. A., Sapuan, S. M., Ilyas, R. A., Asyraf, M. R. M., Rahimian Koloor, S. S., & Petrů, M. (2021). Micro-and nanocellulose in polymer composite materials: A review. Polymers, 13(2), 231.

DOI: 10.3390/polym13020231

Google Scholar

[7] Ahmad Fauzi, A. A., Osman, A. F., Alrashdi, A. A., Mustafa, Z., & Abdul Halim, K. A. (2022). On the use of dolomite as a mineral filler and co-filler in the field of polymer composites: a review. Polymers, 14(14), 2843.

DOI: 10.3390/polym14142843

Google Scholar

[8] Chong, L.K., Osman, A.F., Fauzi, A.A.A., Alrashdi, A.A., & Halim, K.A.A. (2021). The mechanical and thermal properties of poly (ethylene-co-vinyl acetate)(pecova) composites with pristine dolomite and organophilic microcrystalline dolomite (OMCD). Polymers, 13(18).

DOI: 10.3390/polym13183034

Google Scholar

[9] Shoja, M., Mohammadi-Roshandeh, J., Hemmati, F., Zandi, A. A., & Farizeh, T. (2020). Plasticized starch-based biocomposites containing modified rice straw fillers with thermoplastic, thermoset-like and thermoset chemical structures. International journal of biological macromolecules, 157, 715-725.

DOI: 10.1016/j.ijbiomac.2019.11.236

Google Scholar

[10] Arunkumar, K., Raghu, R., LetaTesfaye, J., & Krishnaraj, R. (2022). Effect of graphene filler on mechanical properties of cotton/viscose hybrid composite. Materialwissenschaft und Werkstofftechnik, 53(3), 298-307.

DOI: 10.1002/mawe.202100138

Google Scholar

[11] Nagaprasad, N., Vignesh, V., Karthik Babu, N. B., Manimaran, P., Stalin, B., & Ramaswamy, K. (2022). Effect of green hybrid fillers loading on mechanical and thermal properties of vinyl ester composites. Polymer Composites, 43(11), 7928-7939.

DOI: 10.1002/pc.26925

Google Scholar

[12] Lai, D. S., Osman, A. F., Adnan, S. A., Ibrahim, I., Alrashdi, A. A., Ahmad Salimi, M. N., & Ul-Hamid, A. (2021). On the use of OPEFB-derived microcrystalline cellulose and nano-bentonite for development of thermoplastic starch hybrid bio-composites with improved performance. Polymers, 13(6), 897.

DOI: 10.3390/polym13060897

Google Scholar

[13] Adnan, S. A., Osman, A. F., Ibrahim, I., & Haq, H. (2021, November). Mechanical properties of thermoplastic starch biocomposite films with hybrid fillers. In Journal of Physics: Conference Series (Vol. 2080, No. 1, p.012011). IOP Publishing.

DOI: 10.1088/1742-6596/2080/1/012011

Google Scholar

[14] Dang, K. M., & Yoksan, R. (2021). Thermoplastic starch blown films with improved mechanical and barrier properties. International Journal of Biological Macromolecules, 188, 290-299.

DOI: 10.1016/j.ijbiomac.2021.08.027

Google Scholar

[15] Adnan, S. A., Ranjamdin, A. N., Osman, A. F., Ibrahim, I., Sheng, L. D., Zaidi, N. H. A., & Leman, M. H. (2021, May). Mechanical properties of thermoplastic starch/oil palm empty fruit bunch biocomposite film. In AIP Conference Proceedings (Vol. 2339, No. 1). AIP Publishing.

DOI: 10.1063/5.0044668

Google Scholar

[16] Estrada-Monje, A., Alonso-Romero, S., Zitzumbo-Guzmán, R., Estrada-Moreno, I. A., & Zaragoza-Contreras, E. A. (2021). Thermoplastic starch-based blends with improved thermal and thermomechanical properties. Polymers, 13(23), 4263.

DOI: 10.3390/polym13234263

Google Scholar

[17] Gwon, J. G., Lee, S. Y., Chun, S. J., Doh, G. H., & Kim, J. H. (2010). Effects of chemical treatments of hybrid fillers on the physical and thermal properties of wood plastic composites. Composites Part A: Applied Science and Manufacturing, 41(10), 1491-1497.

DOI: 10.1016/j.compositesa.2010.06.011

Google Scholar

[18] Osman, A.F., Siah, L., Alrashdi, A. A., Ul-Hamid, A., & Ibrahim, I. (2021). Improving the tensile and tear properties of thermoplastic starch/dolomite biocomposite film through sonication process. Polymers, 13(2), 274.

DOI: 10.3390/polym13020274

Google Scholar

[19] Gironès, J., López, J., Mutjé, P., Carvalho, A. D., Curvelo, A. A. D. S., & Vilaseca, F. (2012). Natural fiber-reinforced thermoplastic starch composites obtained by melt processing. Composites Science and Technology, 72(7), 858-863.

DOI: 10.1016/j.compscitech.2012.02.019

Google Scholar

[20] Hassan, A., Salema, A. A., Ani, F. N., & Bakar, A. A. (2010). A review on oil palm empty fruit bunch fiber‐reinforced polymer composite materials. Polymer Composites, 31(12), 2079-2101.

DOI: 10.1002/pc.21006

Google Scholar

[21] Almeida-Naranjo, C. E., Valle, V., Aguilar, A., Cadena, F., Kreiker, J., & Raggiotti, B. (2022). Water absorption behavior of oil palm empty fruit bunch (OPEFB) and oil palm kernel shell (OPKS) as fillers in acrylic thermoplastic composites. Materials, 15(14), 5015.

DOI: 10.3390/ma15145015

Google Scholar

[22] Rosdi, M. H. H. M., Ahad, N. A., & Shahdan, D. (2022). Comparison on oil and water absorption ability of various natural fiber. In Journal of Physics: Conference Series (Vol. 2169, No. 1, p.012021). IOP Publishing.

DOI: 10.1088/1742-6596/2169/1/012021

Google Scholar

[23] Jumaidin, R., Sapuan, S. M., Jawaid, M., Ishak, M. R., & Sahari, J. (2017). Thermal, mechanical, and physical properties of seaweed/sugar palm fibre reinforced thermoplastic sugar palm Starch/Agar hybrid composites. International Journal of Biological Macromolecules, 97, 606-615.

DOI: 10.1016/j.ijbiomac.2017.01.079

Google Scholar

[24] Khan, I., Challa, B., Varma, S. H., & Sayyed, M. A. A. (2019). Sorptivity and durability assessment of dolomite impregnated ternary concrete. Int J Recent Technol Eng, 8(2).

Google Scholar