The Effect of Particle Size of Recovered Carbon Black (rCB) on the Properties of Epoxy Conductive Material

Article Preview

Abstract:

This research investigates the effect of different particle sizes of recovered carbon black (rCB) on the electrical conductivity, flexural and fractured toughness properties and morphology of epoxy/rCB conductive composites. The rCB powder was a product from the pyrolysis process of waste rubber tires. This research aims for the application of tray production in semiconductor packaging. In this study, the composite was prepared by using a simple mechanical stirring method. The testing and characterizations carried out included electrical conductivity test, flexural test, fracture toughness test, Scanning Electron Microscopy (SEM) and viscosity. The epoxy/rCB conductive composite shows significant differences in electrical conductivity and mechanical properties when incorporated with different particle sizes of rCB. The conductivity percolation threshold was found at 1000 mesh with enhanced mechanical and electrical conductivity properties simultaneously.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

45-52

Citation:

Online since:

December 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Rosner, T. Bhagde, D. S. Slaughter, V. Zorba, and J. Stokes-draut, "Techno-Economic and Carbon Dioxide Emission Assessment of Carbon Black Production," J. Clean. Prod., 436(2024) 140224.

DOI: 10.1016/j.jclepro.2023.140224

Google Scholar

[2] G. K, Technological Characteristics of Epoxy/Carbon Black Composites, Materials Today: Proceedings. 31 (2020) 496–498.

Google Scholar

[3] K. W. Kam, P. L. Teh, C. K. Yeoh, H. Osman, B. Y. Lim. "Enhancing Compatibility in Epoxy/Vulcanized Natural Rubber (VNR)/Graphene Nano-Platelets (GNP) System Using Epoxidized Natural Rubber (ENR-50), Composites Part B: Engineering, 1741(2019) 107058.

DOI: 10.1016/j.compositesb.2019.107058

Google Scholar

[4] R. K. Rao, S. Gautham and S. Sasmal, "A Comprehensive Review on Carbon Nanotubes Based Smart Nanocomposites Sensors for Various Novel Sensing Applications", Polymer Reviews, 64(2024) 575-638.

DOI: 10.1080/15583724.2024.2308889

Google Scholar

[5] J. H. Lim, C. K. Yeoh, C. Abdullah and P. L. Teh. "Band Structure and Thermoelectric Properties of Inkjet Printed ZnO and ZnFe2O4 Thin Films". Ceramics International, 42(2016) 12064 – 12073.

DOI: 10.1016/j.ceramint.2016.04.135

Google Scholar

[6] N. Sakib and A. K. M. A. Iqbal, "Epoxy Based Nanocomposite Material for Automotive Application- A Short Review," Int. J. Automot. Mech. Eng., 18(2021) 9127–9140.

Google Scholar

[7] V. J. Leow, P. L. Teh, C. K. Yeoh, N. A. Abdul Rahim , W. C. Wong , C. H. Voon , M. S. Mohamed Rasidi and B. Y. Lim, The effect of coated calcium carbonate using stearic acid on the recovered carbon black masterbatch in low-density polyethylene composites, E-Polymers. 23(2023) 1-13.

DOI: 10.1515/epoly-2023-0025

Google Scholar

[8] W. M. Che, P. L. Teh, C. K. Yeoh, J. B. A. Jalil, B. Y. Lim, and M. S. M. Rasidi, Effect of dispersibility of graphene nanoplatelets on the properties of natural rubber latex composites using sodium dodecyl sulfate, E-Polymers. 22(2022) 752–762.

DOI: 10.1515/epoly-2022-0058

Google Scholar

[9] Y. Li, X. Wang, H. Cheng, C. Han Dongdong Li. "Effect of Carbon Black and Chain Extender On Thermal, Rheological And Mechanical Properties of Fully Biodegradable Poly(Butylene Adipate-Co-Terephthalate)/Poly(3-Hydroxybutyrate-Co-4-Hydroxybutyrate) Blends. 73(2024) 410-420.

DOI: 10.1002/pi.6617

Google Scholar

[10] T. Bera, S. K. Acharya, and P. Mishra, Synthesis, Mechanical and Thermal Properties Of Carbon Black/Epoxy Composites, Int. J. Eng. Sci. Technol. 10 (2018) 12–20.

DOI: 10.4314/ijest.v10i4.2

Google Scholar

[11] W. M. Che, P. L. Teh, C. K. Yeoh, and A. J. Jalilah, The effect of graphene loading on natural rubber latex/graphene stretchable conductive material, IOP Conf. Ser. Mater. Sci. Eng. 670 (2019) 5–10.

DOI: 10.1088/1757-899x/670/1/012041

Google Scholar

[12] L. O. Ejeta, Y. Zheng and Y. Zhou, The Influence of Filler Concentrations and Processing Parameters on the Mechanical Properties of Uncompatibilized CS/HDPE Biocomposites, Mechanics of Composite Materials. (2024)

DOI: 10.1007/s11029-024-10218-x

Google Scholar

[13] W. C. Wong, P. L. Teh, A. F. Osman, and C. K. Yeoh, The Properties Of Epoxy/Graphene Conductive Materials Using High Speed Mechanical Stirrer And Bath Sonicator, Mater. Sci. Forum. 888 (2017) 222–227.

DOI: 10.4028/www.scientific.net/msf.888.222

Google Scholar

[14] N. Domun, H. Hadavinia, T. Zhang, T. Sainsbury, G. H. Liaghat, and S. Vahid, Improving The Fracture Toughness And The Strength Of Epoxy Using Nanomaterials-A Review of The Current Status, Nanoscale. 7 (2015) 10294–10329.

DOI: 10.1039/c5nr01354b

Google Scholar

[15] D. Sahu & R. K. Sahu, Investigation To the Effects of Particulate-Polymer Fillers on The Viscoelastic Properties of VHB 4910 Elastomer For Artificial Muscle. Journal of Polymer Research, 31(2024) 117.

DOI: 10.1007/s10965-024-03966-w

Google Scholar