[1]
S. Sarker, D. Kim, M. S. Azad, C. Sinsabvarodom, and S. Guk, "Influence of optimal intensity measures selection in engineering demand parameter of fixed jacket offshore platform," Applied Sciences (Switzerland), vol. 11, no. 22, Nov. 2021.
DOI: 10.3390/app112210745
Google Scholar
[2]
H. Khalili, S. Oterkus, N. Barltrop, and U. Bharadwaj, "Updating the distributions of uncertain parameters involved in fatigue analysis," J Mar Sci Eng, vol. 8, no. 10, p.1–20, Oct. 2020.
DOI: 10.3390/jmse8100778
Google Scholar
[3]
Z. Pan et al., "Parametric study on SCF distribution along the weld toe of internally ring- stiffened two-planar tubular KK joints under axial loading," Ocean Engineering, vol. 248, Mar. 2022.
DOI: 10.1016/j.oceaneng.2022.110826
Google Scholar
[4]
H. Nassiraei and P. Rezadoost, "Stress concentration factors in tubular T-joints reinforced with external ring under in-plane bending moment," Ocean Engineering, vol. 266, Dec. 2022.
DOI: 10.1016/j.oceaneng.2022.112551
Google Scholar
[5]
N. Li, W. Shi, X. Han, X. Li, A. S. Verma, and C. Liu, "Dynamic analysis of an integrated offshore structure comprising a jacket-supported offshore wind turbine and aquaculture steel cage," Ocean Engineering, vol. 274, Apr. 2023.
DOI: 10.1016/j.oceaneng.2023.114059
Google Scholar
[6]
P. Zhang et al., "Bearing capacity and load transfer of brace topological in offshore wind turbine jacket structure," Ocean Engineering, vol. 199, Mar. 2020.
DOI: 10.1016/j.oceaneng.2020.107037
Google Scholar
[7]
I. W. Chen, B. L. Wong, Y. H. Lin, S. W. Chau, and H. H. Huang, "Design and analysis of jacket substructures for offshore wind turbines," Energies (Basel), vol. 9, no. 4, Apr. 2016.
DOI: 10.3390/en9040264
Google Scholar
[8]
H. Moradi, H. R. Karimi, N. S. KaramZadeh, and E. O'Din Rabei Golami, "Effects of leg slope on the failure of fixed jacket platforms: A case study of south pars gas Field's platforms," Ocean Engineering, vol. 210, Aug. 2020.
DOI: 10.1016/j.oceaneng.2020.107401
Google Scholar
[9]
N. Azari-Dodaran and H. Ahmadi, "A numerical study on the ultimate load of offshore two-planar tubular TT-joints reinforced with internal ring stiffeners at fire-induced elevated temperatures," Ocean Engineering, vol. 230, Jun. 2021.
DOI: 10.1016/j.oceaneng.2021.108797
Google Scholar
[10]
E. O. Oshogbunu, Y. C. Wang, and T. Stallard, "Reliability and applications of a new design method for calculating hot-spot stress in CHS double K-joints under arbitrary combined loading," Structures, vol. 29, p.1610–1626, Feb. 2021.
DOI: 10.1016/j.istruc.2020.11.057
Google Scholar
[11]
K. Chatziioannou, S. A. Karamanos, and Y. Huang, "Ultra low-cycle fatigue performance of S420 and S700 steel welded tubular X-joints," Int J Fatigue, vol. 129, Dec. 2019.
DOI: 10.1016/j.ijfatigue.2019.105221
Google Scholar
[12]
S. Li, C. hui Sun, X. lei Li, J. bo Tian, and D. xian Gao, "Seismic design lateral force distribution based on inelastic state of K-eccentric brace frames combined with high strength steel," Structures, vol. 29, p.1748–1762, Feb. 2021.
DOI: 10.1016/j.istruc.2020.12.046
Google Scholar
[13]
D. Stevens and L. Wiebe, "Experimental Testing of a Replaceable Brace Module for Seismically Designed Concentrically Braced Steel Frames," Journal of Structural Engineering, vol. 145, no. 4, Apr. 2019.
DOI: 10.1061/(asce)st.1943-541x.0002283
Google Scholar
[14]
M. R. Tabeshpour and M. Fatemi, "Optimum arrangement of braces in jacket platform based on strength and ductility," Marine Structures, vol. 71, May 2020.
DOI: 10.1016/j.marstruc.2020.102734
Google Scholar
[15]
L. Zheng et al., "Seismic performance of improved multistorey X-braced steel frames," J Constr Steel Res, vol. 212, Jan. 2024.
Google Scholar
[16]
A. Pourzangbar and M. Vaezi, "Optimal design of brace-viscous damper and pendulum tuned mass damper using Particle Swarm Optimization," Applied Ocean Research, vol. 112, Jul. 2021.
DOI: 10.1016/j.apor.2021.102706
Google Scholar
[17]
M. Xu, J. Guo, S. Wang, J. Li, and H. Hao, "Structural damage identification with limited modal measurements and ultra-sparse Bayesian regression," Struct Control Health Monit, vol. 28, no. 6, Jun. 2021.
DOI: 10.1002/stc.2729
Google Scholar
[18]
B. Puruncajas, Y. Vidal, and C. Tutivén, "Vibration-response-only structural health monitoring for offshore wind turbine jacket foundations via convolutional neural networks," Sensors (Switzerland), vol. 20, no. 12, p.1–19, Jun. 2020.
DOI: 10.3390/s20123429
Google Scholar
[19]
M. Wang et al., "Structural health monitoring on offshore jacket platforms using a novel ensemble deep learning model," Ocean Engineering, vol. 301, Jun. 2024.
DOI: 10.1016/j.oceaneng.2024.117510
Google Scholar
[20]
H. Nassiraei, A. Mojtahedi, and M. A. Lotfollahi-Yaghin, "Static strength of X-joints reinforced with collar plates subjected to brace tensile loading," Ocean Engineering, vol. 161, p.227–241, Aug. 2018.
DOI: 10.1016/j.oceaneng.2018.05.017
Google Scholar
[21]
S. Wang, X. Meng, S. Ji, H. Fang, Y. Liu, and L. Y. Duan, "All-metal brace with hysteresis dissipation for impact protection of jacket platforms," Marine Structures, vol. 66, p.1–15, Jul. 2019.
DOI: 10.1016/j.marstruc.2019.02.009
Google Scholar
[22]
M. Vaezi, A. Pourzangbar, M. Fadavi, S. M. Mousavi, P. Sabbahfar, and M. Brocchini, "Effects of stiffness and configuration of brace-viscous damper systems on the response mitigation of offshore jacket platforms," Applied Ocean Research, vol. 107, Feb. 2021.
DOI: 10.1016/j.apor.2020.102482
Google Scholar
[23]
S. Wang, X. Meng, S. Ji, H. Fang, Y. Liu, and L. Y. Duan, "All-metal brace with hysteresis dissipation for impact protection of jacket platforms," Marine Structures, vol. 66, p.1–15, Jul. 2019.
DOI: 10.1016/j.marstruc.2019.02.009
Google Scholar
[24]
Y. Zhou, H. Shao, Y. Cao, and E. M. Lui, "Application of buckling-restrained braces to earthquake-resistant design of buildings: A review," Engineering Structures, vol. 246. Elsevier Ltd, Nov. 01, 2021.
DOI: 10.1016/j.engstruct.2021.112991
Google Scholar
[25]
S. M. Vazirizade, H. Azizsoltani, and A. Haldar, "Reliability estimation of jacket type offshore platforms against seismic and wave loadings applied in time domain," Ships and Offshore Structures, vol. 17, no. 1, p.143–152, 2022.
DOI: 10.1080/17445302.2020.1827632
Google Scholar
[26]
V. J. Kurian, M. C. Voon, M. M. A. Wahab, and M. S. Liew, "System Reliability Assessment of Existing Jacket Platforms in Malaysian Waters," Research Journal of Applied Sciences, Engineering and Technology, vol. 8, no. 23, p.2305–2314, 2014.
DOI: 10.19026/rjaset.8.1233
Google Scholar
[27]
A. A. Shittu, A. Mehmanparast, L. Wang, K. Salonitis, and A. Kolios, "Comparative study of structural reliability assessment methods for offshore wind turbine jacket support structures," Applied Sciences (Switzerland), vol. 10, no. 3, Feb. 2020.
DOI: 10.3390/app10030860
Google Scholar
[28]
Y. Zhao, S. Dong, F. Jiang, and C. Guedes Soares, "System Reliability Analysis of an Offshore Jacket Platform," Journal of Ocean University of China, vol. 19, no. 1, p.47–59, Feb. 2020.
DOI: 10.1007/s11802-020-4181-2
Google Scholar
[29]
U. M. Modibbo, M. Arshad, O. Abdalghani, and I. Ali, "Optimization and estimation in system reliability allocation problem," Reliab Eng Syst Saf, vol. 212, Aug. 2021.
DOI: 10.1016/j.ress.2021.107620
Google Scholar
[30]
Y. Yu et al., "Reliability-based design method for marine structures combining topology, shape, and size optimization," Ocean Engineering, vol. 286, Oct. 2023.
DOI: 10.1016/j.oceaneng.2023.115490
Google Scholar
[31]
"Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms-Working Stress Design API Recommended Practice 2A-WSD(RP 2A-WSD) Twenty-First Edition, Desember 2000 and Suplement 1, December 2002," 2003.
DOI: 10.2523/20837-ms
Google Scholar
[32]
Y. Bai and W.-L. Jin, Marine structural design.
Google Scholar