Effects of Processing Parameters on the Properties of Water Hyacinth Film Fabricated via Thermal Compression Method

Article Preview

Abstract:

Water hyacinth (WH), a free-floating aquatic plant with rapid growth characteristics, often forms thick layers on the water surface, causing issues such as destroying the ecosystem, affecting aquaculture, and hindering agricultural activities. Using WH to produce valuable products can contribute to economic development and overcome these problems. This study used the thermal compression technique to fabricate the cellulose film from alkali-treated WH without using synthetic polymers. The effects of the processing time and temperature of the thermal compression method on the tensile properties, moisture content, and water absorption were investigated. A scanning electron microscope characterized the surface morphology of WH fibers. The results showed that the WH film possessed some specific properties, including a tensile strength of 1.869 MPa, an elongation of 1.25 %, a moisture content of 3.05 %, water absorption of 62.99 %, and water contact angle of 70.1o. In future perspective, WH film can be used to manufacture biodegradable products for commercial applications, such as coasters and plates, thanks to availability, sustainability, plentiful and inexpensive raw materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

81-91

Citation:

Online since:

December 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Sumrith, L. Techawinyutham, M.R. Sanjay, R. Dangtungee, S. Siengchin, Characterization of Alkaline and Silane Treated Fibers of 'Water Hyacinth Plants' and Reinforcement of 'Water Hyacinth Fibers' with Bioepoxy to Develop Fully Biobased Sustainable Ecofriendly Composites, J. Polym. Environ. 28 (2020) 2749–2760.

DOI: 10.1007/s10924-020-01810-y

Google Scholar

[2] A. Ajithram, J.T. Winowlin Jappes, N.C. Brintha, Water hyacinth (Eichhornia crassipes) natural composite extraction methods and properties – A review, Mater. Today Proc. 45 (2021) 1626–1632.

DOI: 10.1016/j.matpr.2020.08.472

Google Scholar

[3] W. Su, Q. Sun, M. Xia, Z. Wen, Z. Yao, The Resource Utilization of Water Hyacinth (Eichhornia crassipes [Mart.] Solms) and Its Challenges, Resources 7 (2018) 46.

DOI: 10.3390/resources7030046

Google Scholar

[4] S. Patel, Threats, management and envisaged utilizations of aquatic weed Eichhornia crassipes: an overview, Rev. Environ. Sci. Bio/Technology 11 (2012) 249–259.

DOI: 10.1007/s11157-012-9289-4

Google Scholar

[5] A. Ajithram, J.T.W. Jappes, S. Vignesh, Smart and Sustainable Product Development from Environmentally Polluted Water Hyacinth (Eichhornia Crassipes) Plant, in: 2023: p.339–350.

DOI: 10.1007/978-981-19-5327-9_16

Google Scholar

[6] M.R. Sanjay, P. Madhu, M. Jawaid, P. Senthamaraikannan, S. Senthil, S. Pradeep, Characterization and properties of natural fiber polymer composites: A comprehensive review, J. Clean. Prod. 172 (2018) 566–581.

DOI: 10.1016/j.jclepro.2017.10.101

Google Scholar

[7] F. Li, X. He, A. Srishti, S. Song, H.T.W. Tan, D.J. Sweeney, S. Ghosh, C.-H. Wang, Water hyacinth for energy and environmental applications: A review, Bioresour. Technol. 327 (2021) 124809.

DOI: 10.1016/j.biortech.2021.124809

Google Scholar

[8] R.K. Opu, M.R. Hossain, M.S.H. Monir, R.H. Shanto, M.S. Osman, Co-liquefaction of faecal sludge and water hyacinth: Exploring the fuel characteristics of biocrude including thermal maturation and petroleum fractionation, Biomass and Bioenergy 173 (2023) 106785.

DOI: 10.1016/j.biombioe.2023.106785

Google Scholar

[9] S.L. Wright, F.J. Kelly, Plastic and Human Health: A Micro Issue?, Environ. Sci. Technol. 51 (2017) 6634–6647.

DOI: 10.1021/acs.est.7b00423

Google Scholar

[10] C.I. Idumah, I.C. Nwuzor, Novel trends in plastic waste management, SN Appl. Sci. 1 (2019) 1402.

DOI: 10.1007/s42452-019-1468-2

Google Scholar

[11] P. Dong, Y. Ye, Y. Zhang, Renewable polymers to help human sustainable development under the current situation of fossil resource depletion, in: T. Palanisamy, L. Boon Han (Eds.), Eighth Int. Conf. Energy Mater. Electr. Eng. (ICEMEE 2022), SPIE, 2023: p.93.

DOI: 10.1117/12.2673036

Google Scholar

[12] Everything you need to know about plastic pollution, Chem. Pollut. Action (2023).

Google Scholar

[13] J. Simon, H.P. Müller, R. Koch, V. Müller, Thermoplastic and biodegradable polymers of cellulose, Polym. Degrad. Stab. 59 (1998) 107–115.

DOI: 10.1016/s0141-3910(97)00151-1

Google Scholar

[14] V.K. Thakur, M.K. Thakur, Processing and characterization of natural cellulose fibers/thermoset polymer composites, Carbohydr. Polym. 109 (2014) 102–117.

DOI: 10.1016/j.carbpol.2014.03.039

Google Scholar

[15] C. Uma Maheswari, K. Obi Reddy, E. Muzenda, B.R. Guduri, A. Varada Rajulu, Extraction and characterization of cellulose microfibrils from agricultural residue – Cocos nucifera L., Biomass and Bioenergy 46 (2012) 555–563.

DOI: 10.1016/j.biombioe.2012.06.039

Google Scholar

[16] S. Anantachaisilp, S. Siripromsombut, T. Ruansoong, T. Kwamman, An eco-friendly bioplastic film obtained from water hyacinth, J. Phys. Conf. Ser. 1719 (2021) 012110.

DOI: 10.1088/1742-6596/1719/1/012110

Google Scholar

[17] M. Mahardika, H. Abral, D. Amelia, Recent Developments in Water Hyacinth Fiber Composites and Their Applications, in: 2023: p.229–243.

DOI: 10.1007/978-981-19-5327-9_11

Google Scholar

[18] S. Rezania, M. Ponraj, M.F.M. Din, A.R. Songip, F.M. Sairan, S. Chelliapan, The diverse applications of water hyacinth with main focus on sustainable energy and production for new era: An overview, Renew. Sustain. Energy Rev. 41 (2015) 943–954.

DOI: 10.1016/j.rser.2014.09.006

Google Scholar

[19] H.A. Vang, Q.V. Tran, P.N. Le, N.A.T. Huynh, V.V.L. Nguyen, Fabrication of biodegradable masks from banana leaves by thermal compression method, Minist. Sci. Technol. Vietnam 65 (2023) 31–36.

Google Scholar

[20] ASTM International - ASTM D882-18 Standard Test Method for Tensile Properties of Thin Plastic Sheeting, ASTM Int. (2018).

Google Scholar

[21] ASTM International (2018), ASTM D570-98: Standard Test Method for Water Absorption of Plastics, ASTM Int. (1998).

Google Scholar

[22] R.S. Akshana, N. Sobini, T. Kirushanthi, S. Srivijeindran, Synthesis of cellulose nano fiber from palmyrah fruit fiber and its applicability as a reinforcement agent on starch based biodegradable film, Ceylon J. Sci. 53 (2024) 313–320.

DOI: 10.4038/cjs.v53i3.8257

Google Scholar

[23] P. Pantamanatsopa, W. Ariyawiriyanan, S. Ekgasit, Production of Cellulose Nanocrystals Suspension with High Yields from Water Hyacinth, J. Nat. Fibers 20 (2023).

DOI: 10.1080/15440478.2022.2134266

Google Scholar

[24] K. Song, X. Zhu, W. Zhu, X. Li, Preparation and characterization of cellulose nanocrystal extracted from Calotropis procera biomass, Bioresour. Bioprocess. 6 (2019) 45.

DOI: 10.1186/s40643-019-0279-z

Google Scholar

[25] T.T. Van Nguyen, N. Tri, B.A. Tran, T. Dao Duy, S.T. Nguyen, T.-A. Nguyen, A.N. Phan, P. Mai Thanh, H.K.P. Huynh, Synthesis, Characteristics, Oil Adsorption, and Thermal Insulation Performance of Cellulosic Aerogel Derived from Water Hyacinth, ACS Omega 6 (2021) 26130–26139.

DOI: 10.1021/acsomega.1c03137

Google Scholar

[26] K. Pakutsah, D. Aht-Ong, Facile isolation of cellulose nanofibers from water hyacinth using water-based mechanical defibrillation: Insights into morphological, physical, and rheological properties, Int. J. Biol. Macromol. 145 (2020) 64–76.

DOI: 10.1016/j.ijbiomac.2019.12.172

Google Scholar

[27] A.R. Martin, M.A. Martins, O.R.R.F. da Silva, L.H.C. Mattoso, Studies on the thermal properties of sisal fiber and its constituents, Thermochim. Acta 506 (2010) 14–19.

DOI: 10.1016/j.tca.2010.04.008

Google Scholar

[28] X. Li, L.G. Tabil, S. Panigrahi, Chemical Treatments of Natural Fiber for Use in Natural Fiber-Reinforced Composites: A Review, J. Polym. Environ. 15 (2007) 25–33.

DOI: 10.1007/s10924-006-0042-3

Google Scholar