Effect of Na Doping or Substitution on the Structural and Electrochemical Properties of Cobalt-Free Li-Rich Mn-Based Cathode Materials

Article Preview

Abstract:

Cobalt-free Li-rich Mn-based cathode materials are considered to be the next generation of Li-ion batteries due to low cost, high discharge capacities and high safety feature. However, there are still several serious issues that need to be solved urgently, such as low initial coulombic efficiency, low rate capability, poor cycling performance and voltage fading. Na doping or substitution is introduced to improve the electrochemical performance of Li1.2Mn0.6Ni0.2O2 cathode material, which is synthesized by sol-gel method. The effect of Na doping or substitution on the morphological, structural and electrochemical properties was systematically studied and analyzed by scanning electron microscope (SEM), X-Ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), cell test system and electrochemical workstation. These results illustrate that lattice layer spacing is enlarged by Na doping or substitution, which is beneficial for the diffusion of Li-ion, and the voltage fading is successfully suppressed. The best electrochemical properties were obtained when Na doping, which is attributed to the stronger structural stability and better reversibility of Li+ during the initial charge and discharge process.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1001)

Pages:

181-190

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Chen, Bozhou, Zhao, Bangchuan, Zhou, Jiafeng, Fang, Zhitang, Huang, Yanan, Zhu, Xuebin, Sun, Yuping. Surface modification with oxygen vacancy in Li-rich layered oxide Li1.2Mn0.54Ni0.13Co0.13O2 for lithium-ion batteries. Journal of Materials Science & Tenchnology. 2019, 35(6): 994-1002.

DOI: 10.1016/j.jmst.2018.12.021

Google Scholar

[2] Bao Liying, Yang Zeliang, Chen Lai, Su Yuefeng, Lu Yun, Li Weikang, Yuan Feiyu, Dong Jinyang, Fang Youyou, Ji Zhe. The Effects of Trace Yb Doping on the Electrochemical Performance of Li-Rich Layered Oxides. Chemsuschem. 2019, 12(10): 2294-2301.

DOI: 10.1002/cssc.201900226

Google Scholar

[3] Zhong Wang, Yanping Yin, Yang Ren, Zhenyao Wang, Min Gao, Tianyuan Ma, Weidong Zhuan, Shigang Lu. AilingFane KhalilAmined ZonghaiChend High performance lithium manganese-rich cathode material with reduced impurities. Nano Energy. 2017,31:247–257.

DOI: 10.1016/j.nanoen.2016.10.014

Google Scholar

[4] Liu Yunjian, Zhang Zhiqiang, Fu Yanbao, Wang Qiliang, Pan Jun, Su Mingru, Battaglia Vincent S. Investigation the electrochemical performance of Li1.2Ni0.2Mn0.6O2 cathode material with ZnAl2O4 coating for lithium ion batteries. Journal of Alloys and Compounds. 2016, 685: 523-532.

DOI: 10.1016/j.jallcom.2016.05.329

Google Scholar

[5] Martha Surendra K, Nanda Jagjit, Kim Yoongu, Unocic Raymond R., Pannala Sreekanth, Dudney Nancy J. Solid electrolyte coated high voltage layered-layered lithium-rich composite cathode: Li1.2Mn0.525Ni0.175Co0.1O2. Journal of Materials Chemistry A. 2013, 1 (18), 5587-5595.

DOI: 10.1039/c3ta10586e

Google Scholar

[6] Yuan Li-Xia, Wang Zhao-Hui, Zhang Wu-Xing, Hu Xian-Luo, Chen Ji-Tao, Huang Yun-Hui, Goodenough John B. Development and challenges of LiFePO4 cathode material for lithium-ion batteries. Energy Environ. Sci. 2011,4 (2), 269-284.

DOI: 10.1039/c0ee00029a

Google Scholar

[7] Meng Junxia, Xu Huaizhe, Ma Quanxin, Li Zhifeng, Xu, Lishuang, Chen Zaijun, Cheng Boming, Zhong Shengwen. Precursor pre-oxidation enables highly exposed plane {010} for high-rate Li-rich layered oxide cathode materials. Electrochimica Acta. 2019, 309: 326-33.

DOI: 10.1016/j.electacta.2019.04.040

Google Scholar

[8] Singh Raghubar, Reddy Bacham E, Kuma Yerra Bhara, Antia, H. M. Survey of Li-rich Giants among Kepler and LAMOST Fields: Determination of Li-rich Giants' Evolutionary Phase. Astrophysical Journal Lettres. 2019,878(1): 256-264.

DOI: 10.3847/2041-8213/ab2599

Google Scholar

[9] Croy Jason R., Kim Donghan, Balasubramanian Mahalingam, Gallagher Kevin, Kang, Sun-Ho, Thackeray Michael M. Countering the Voltage Decay in High Capacity xLi2MnO3 center dot(1-x)LiMO2 Electrodes (M=Mn, Ni, Co) for Li+-Ion Batteries. Journal of. Electrochemical Society. 2012, 159: A781-A790.

DOI: 10.1149/2.080206jes

Google Scholar

[10] Yu Xiqian, Lyu Yingchun, Gu Lin, Wu Huiming, Bak Seong-Min, Zhou Yongning, Amine Khalil, Ehrlich Steven N., Li Hong, Nam, Kyung-Wan. Understanding the Rate Capability of High-Energy-Density Li-Rich Layered Li1.2Ni0.15Co0.1Mn0.55O2 Cathode Materials, Adv. Energy Mater. 2014, 4(5): 789-796.

DOI: 10.1002/aenm.201300950

Google Scholar

[11] Shi Wei, Zheng Jianming, Xiao Jie, Chen Xilin, Polzin Bryant J., Zhang Ji-Guang. The Effect of Entropy and Enthalpy Changes on the Thermal Behavior of Li-Mn-Rich LayeredComposite Cathode Materials. Journal of the Electrochemical Society. 2019, 163(3): A571-A577.

DOI: 10.1149/2.0031605jes

Google Scholar

[12] Meng Fanbo, Guo Huajun, Wang Zhixing, Wang Jiexi, Yan Guochun, Wu Xianwen, Li Xinhai, Zhou Lijiao. The influences of SO42- from electrolytic manganese dioxide precursor on the electrochemical properties of Li-rich Mn-based material for Li-ion batteries. Ioncis. 2019,25( 6): 2585-2594.

DOI: 10.1007/s11581-018-2796-8

Google Scholar

[13] Hu Guorong, Xue Zhichen, Luo Zhongyuan, Peng Zhongdong, Cao Yanbing, Wang Weigang, Zeng Yuexi, Huang Yong, Tao Yong, Li Tianfan. Improved cycling performance of CeO2-inlaid Li-rich cathode materials for lithium-ion battery. Ceramics International. 2019, 45(8): 10633-10639.

DOI: 10.1016/j.ceramint.2019.02.132

Google Scholar

[14] Yanying Liu, Zhe Yang, Jianling Li, Bangbang Niu, Kai Yangb, Feiyu Kang. A novel surface-heterostructured Li1.2Mn0.54Ni0.13Co0.13O2@Ce0.8Sn0.2O2s cathode material for Li-ion batteries with improved initial irreversible capacity loss. Journal of Materials Chemistry. A, 2018, 6:13883-13891.

DOI: 10.1039/c8ta04568b

Google Scholar

[15] Zheng Feng, Zheng Shiyao, Zhang Peng, Zhang Xiaofeng, Wu Shunqing, Yang Yong, Zhu Zi-zhong. Impact of Structural Transformation on Electrochemical Performances of Li-Rich Cathode Materials: The Case of Li2RuO3. Journal of Physical Chemistry C. 2019,123(22): 13491-13499.

DOI: 10.1021/acs.jpcc.9b02887

Google Scholar

[16] Wu Feng, Zhang Xiaoxiao, Zhao Taolin, Li Li, Xie Man, Chen Renjie. Multifunctional AlPO4 coating for improving electrochemical properties of low-cost Li[Li0.2Fe0.1Ni0.15Mn0.55]O2 cathode materials for lithium-ion batteries. Acs Applied Materials & Interfaces. 2015, 7 (6), 3773-3781.

DOI: 10.1021/am508579r

Google Scholar

[17] Sorboni Y. Ghasemian, Arabi H.,  Kompany A. Effect of Cu doping on the structural and electrochemical properties of lithium-rich Li1.2Mn0.50Ni0.125Co0.125O2 nanopowders as a cathode material. Ceramics International. 2018, 45(2): 2139-2145.

DOI: 10.1016/j.ceramint.2018.10.122

Google Scholar

[18] Fan Jianming, Li Guangshe, Li Baoyun, Zhang Dan, Chen Dandan, Li Liping. Reconstructing the Surface Structure of Li-Rich Cathodes for High-Energy Lithium-Ion Batteries. Acs Applied Materials & Interfaces. 2019,11( 22): 19950-19958.

DOI: 10.1021/acsami.9b02827

Google Scholar

[19] Han Peng, Linxiao Yao, Ming Zhang. Ce3+ doping into 0.6Li2MnO3·0.4LiNi0.5Co0.2Mn0.3O2 as cathode material for Li-ion batteries applied in new energy vehicle. Materials Research Express. 2018, 5(6): 065505.

Google Scholar

[20] Ma Quanxin, Li Ruhong, Zheng Rujuan, Liu Yuanlong, Huo Hua, Dai Changsong. Improving rate capability and decelerating voltage decay of Li-rich layered oxide cathodes via selenium doping to stabilize oxygen. Jouranl of Power Sources. 2016, 331: 112-121.

DOI: 10.1016/j.jpowsour.2016.08.137

Google Scholar

[21] Laisa C.P., Ramesha R.N., Ramesha K. Enhanced electrochemical performance of lithium rich layered cathode materials by Ca2+ substitution. Electrochim. Acta. 2017, 256: 10-18.

DOI: 10.1016/j.electacta.2017.10.029

Google Scholar

[22] Wei Kong Pang, Hsiu-Fen Lin, Vanessa K. Peterson, Cheng-Zhang Lu, Chia-Erh Liu, Shih-Chieh Liao, Jin-Ming Chen. Effects of Fluorine and Chromium Doping on the Performance of Lithium-Rich Li1+xMO2 (M = Ni, Mn, Co) Positive Electrodes. Journal of Materials Chemistry. 2017, 29:10299-10311.

DOI: 10.1021/acs.chemmater.7b02930.s001

Google Scholar

[23] Yanhong Xiang, Xianwen Wu. Enhanced electrochemical performances of Li2MnO3 cathode materials by Al doping. Ionics. 2018, 24(1): 83-.

DOI: 10.1007/s11581-017-2189-4

Google Scholar

[24] Junxia Meng, Zicheng Wang, Lishuang Xu, Huaizhe Xu, Shichao Zhang, Qiqi Yan. Enhanced Structural Stability and Improved Electrochemical Performance of Layered Lithium-Rich Cathode Materials via Tellurium Doping. Journal of The Electrochemical Society. 2017,164 (12): A2594-A2602.

DOI: 10.1149/2.1141712jes

Google Scholar

[25] Li Liang, Lee Eungje, Freeland John W., Fister Timothy T., Thackeray Michael M., Chan, Maria K.Y. Identifying the Chemical Origin of Oxygen Redox Activity in Li-Rich Anti-Fluorite Lithium Iron Oxide by Experimental and Theoretical X-ray Absorption Spectroscopy. ournal of Physical Chemistry Letters. 2019,10(4): 806-812.

DOI: 10.1021/acs.jpclett.8b03271

Google Scholar

[26] Chunxiang Yang, Huaqiang Tan, Yuanfu Deng, Xusong Qin, Yingwei Lia, Guohua Chen. Importance of synergistic role of cobalt and aluminum on a greatly improved electrochemical performance of Li-rich oxyfluoride spinel at elevated- temperature. Journal of Alloys and Compounds.2017, 728: 612-622.

DOI: 10.1016/j.jallcom.2017.09.003

Google Scholar

[27] TingFeng Yi, YanMei Li, ShuangYuan Yang, Yanrong Zhu, Ying Xie. Improved Cycling Stability and Fast Charge-Discharge Performance of Cobalt-Free Li-Rich Oxides by Magnesium-Doping . Acs Applied Materials & Interfaces 2016,  8( 47): 32349-32359.

DOI: 10.1021/acsami.6b11724

Google Scholar

[28] Ku Lun, Cai Yuxin, Ma Yating, Zheng Hongfei, Liu Pengfei, Qiao Zhensong, Xie Qingshui, Wang Laisen, Peng, DongLiang. Enhanced electrochemical performances of layered-spinel heterostructured lithium-rich Li1.2Ni0.13Co0.13Mn0.54O2 cathode materials. Journal of Chemical Engineering. 2019,370: 499-507.

DOI: 10.1016/j.cej.2019.03.247

Google Scholar

[29] Gu Haidong, Liu Tingrui, Liu Tingting, Zhou Yuyang, Xu Ming, Chen Feng. Improving the electrochemical properties of Mn-rich Li1.20[Mn0.54Ni0.13Co0.13]O2 by Nb and F co-doping. Solid State Ionics. 2019, 336: 129-138.

DOI: 10.1016/j.ssi.2019.03.018

Google Scholar

[30] Pei Yi, Xu ChengYan, Xiao YuChen, Chen Qing, Huang Bin, Li Bin, Li Shuang, Zhen Liang, Cao Guozhong. Phase transition induced synthesis of layered/spinel heterostructure with enhanced electrochemical properties. Advanced Functional Materials. 2017, 27, 1604349.

DOI: 10.1002/adfm.201604349

Google Scholar

[31] Wei Pana, Wenjie Penga, Huajun Guoa, Jiexi Wanga,b, Zhixing Wanga, Hangkong Li, Kaimin Shih. Effect of molybdenum substitution on electrochemical performance of Li[Li0.2Mn0.54Co0.13Ni0.13]O2 cathode material. Ceramics International. 2017, 43(17): 14836-14841.

DOI: 10.1016/j.ceramint.2017.07.232

Google Scholar

[32] Yunjian Liu, Dongming Liu, Hong-Hui Wu, Xiaojian Fan, Aichun Dou, Qiaobao Zhang, Mingru Su. Improved Cycling Stability of Na-doped Cathode Materials Li1.2Ni0.2Mn0.6O2 via a Facile Synthesis. ACS Sustainable Chemistry & Engineering. 2018, 6(10): 13045-13055.

DOI: 10.1021/acssuschemeng.8b02552

Google Scholar

[33] Billaud Juliette, Sheptyakov Denis, Sallard Sebastien, Leanza Daniela, Talianker Michael, Grinblat Judith, Sclar Hadar, Aurbach Doron, Novak Petr, Villevieille Claire. Li/Fe substitution in Li-rich Ni, Co, Mn oxides for enhanced electrochemical performance as cathode materials. Journal of Materials Chemistry A. 2019,7(25): 15215-15224.

DOI: 10.1039/c9ta00399a

Google Scholar

[34] Liu Pengfei, Zhang Hong, He Wei, Xiong Tengfei, Cheng Yong, Xie Qingshui, Ma Yating, Zheng Hongfei, Wang Laisen, Zhu Zizhong. Lithium Deficiencies Engineering in Li-Rich Layered Oxide Li1.098Mn0.533Ni0.113Co0.138O2 for High-Stability Cathode. Journal of the American Chemical Society. 2019,141(27):10876-10882.

DOI: 10.1021/jacs.9b04974

Google Scholar

[35] Cambaz Musa Ali, Vinayan Bhaghavathi P., Gesswein Holger, Schiele Alexander, Sarapulova Angelina, Diemant Thomas, Mazilkin Andrey, Brezesinski Torsten, Behm R. Juergen, Ehrenberg Helmut. Oxygen Activity in Li-Rich Disordered Rock-Salt Oxide and the Influence of LiNbO3 Surface Modification on the Electrochemical Performance. Chemistry of Materials. 2019,31(12): 4330-4340.

DOI: 10.1021/acs.chemmater.8b04504

Google Scholar

[36] Chen Tao, Li Xiang, Wang Hao, Yan, Xinxiu, Wan Lei, Deng Bangwei, Ge Wujie, Qu, Meizhen. The effect of gradient boracic polyanion-doping on structure, morphology, and cycling performance of Ni-rich LiNi0.8Co0.15Al0.02O2 cathode material. Journal of Power Sources. 2018; 374: 1-11.

DOI: 10.1016/j.jpowsour.2018.05.016

Google Scholar

[37] Liu Yong, Elzatahry Ahmed A., Luo Wei, Lan Kun, Zhang Pengfei, Fan Jianwei, Wei Yong, Wang Chun, Deng Yonghui, Zheng Gengfeng. Surfactant-templating strategy for ultrathin mesoporous TiO2 coating on flexible graphitized carbon supports for high-performance lithium-ion battery. Nano Energy. 2016; 25: 80-90.

DOI: 10.1016/j.nanoen.2016.04.028

Google Scholar

[38] Liang Chenghao, Liu Lianbao, Jia Zheng, Dai Changsong, Xiong Yueping. Synergy of nyquist and bode electrochemical impedance spectroscopy studies to particle size effect on the electrochemical properties of LiNi0.5Co0.2Mn0.3O2. Electrochimica Acta. 2015, 186: 413-419.

DOI: 10.1016/j.electacta.2015.10.190

Google Scholar

[39] Wang Meng, Zhang Ran, Gong Yongqiang, Su Yuefeng, Xiang Debo, Chen Lin, Chen Yunbo, Luo Min, Chu Mo. Improved electrochemical performance of the LiNi0.8Co0.1Mn0.1O2 material with lithium-ion conductor coating for lithium-ion batteries. Solid State Ionics . 2017; 312:53-60.

DOI: 10.1016/j.ssi.2017.10.017

Google Scholar

[40] Wang Yong,Gu, Haitao, Song Jinhua, Feng Zhenhe, Zhou Xinbin, Zhou Yongning, Wang Ke, Xie Jing-Ying. Suppressing Mn Reduction of Li-Rich Mn-Based Cathodes by F-Doping for Advanced Lithium-Ion Batteries. Journal of Physical Chemictry C. 2018,122(49): 27836-27842.

DOI: 10.1021/acs.jpcc.8b08669

Google Scholar

[41] Hongyong Ouyang, Xinhai Li, Zhixing Wang, Huajun Guo, Wenjie Peng. Electrochemical and structural analysis of Mg substitution in lithium-rich layered oxide for lithium-ion battery. Ionics. 2018, 24:3347–3356.

DOI: 10.1007/s11581-018-2475-9

Google Scholar