[1]
H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, H. Hosono, P-type electrical conduction in transparent thin films of CuAlO2, Nature 389 (1997) 939–942.
DOI: 10.1038/40087
Google Scholar
[2]
F. Hattab, M. Fakhry, Optical and structure properties for nano titanium oxide thin film prepared by PLD, 2012 First National Conference for Engineering Sciences (FNCES 2012).
DOI: 10.1109/nces.2012.6740474
Google Scholar
[3]
D. Pavlov and N. Iordano, Growth Processes of the Anodic Crystalline Layer on Potentiostatic Oxidation of Lead in Sulfuric Acid, J. Electrochem. Soc.: Electrochem. Scie., 117(9) (1970) 1103-1109.
DOI: 10.1149/1.2407747
Google Scholar
[4]
ET Salim, MT Awayiz, RO Mahdi, Tea Concentration Effect on the Optical, Structural, and Surface Roughness of Ag2O Thin films, Digest Journal of Nanomaterials and Biostructures,14(4) (2019) 1151-1159.
Google Scholar
[5]
M. A.Hassan, I. R. Agool & L.M. Raoof, Silver oxide nanostructure prepared on porous silicon for optoelectronic application, Appl Nanosci., 4 (2014) 429–447.
DOI: 10.1007/s13204-013-0215-z
Google Scholar
[6]
G. Schon, ESCA Studies of Ag, Ag2O and AgO, Acta Chem. Scand. 27 (1973) 2623-2623.
DOI: 10.3891/acta.chem.scand.27-2623
Google Scholar
[7]
M. A. Fakhri, N. H. Numan, Q.Q. Mohammed, M.S. Abdulla, O. S. Hassan, S. A. Abduljabar and A. A. Ahmed, Responsivity and Response Time of Nano Silver Oxide on Silicon Heterojunction Detector, International Journal of Nanoelectronics and Materials 11 (2018) 109-114.
Google Scholar
[8]
S. M. Hou, M. Ouyang, H. F. Chen et al, Fractal structure in the silver oxide thin film, Thin Solid Films. 2 (1998) 322–326.
DOI: 10.1016/s0040-6090(97)00713-x
Google Scholar
[9]
M. A Dawood, M. A Fakhri, F. G Khalid, O. S Hassan, M. S Abdulla, A.A Ahmed, S. A Abduljabar, Some of Electrical and Detection properties of nano silver oxide, IOP Conference Series: Materials Science and Engineering 454(1) 2018 012161.
DOI: 10.1088/1757-899x/454/1/012161
Google Scholar
[10]
A.J. Varkey & A.F. Fort, Some optical properties of silver peroxide (AgO) and silver oxide (Ag2O) films produced by chemical-bath deposition, Solar Energy Materials and Solar Cells. 29 (1993) 253-259.
DOI: 10.1016/0927-0248(93)90040-a
Google Scholar
[11]
E. T Salim, R. A Ismail, H. T Halbos, Growth of Nb2O5 film using hydrothermal method: effect of Nb concentration on physical properties, Materials Research Express, 6(11) (2019) 116429.
DOI: 10.1088/2053-1591/ab47c2
Google Scholar
[12]
A. C. Nwanya, P. E. Ugwuoke, B. A. Ezekoye,2 R. U. Osuji, & F.I. Ezema, Structural and Optical Properties of Chemical Bath Deposited Silver Oxide, Thin Films: Role of Deposition Time, Advances in Materials Science and Engineering. 2013 (2013) Article ID 450820 8 pages | https://doi.org/10.1155/2013/450820.
DOI: 10.1155/2013/450820
Google Scholar
[13]
M. A Fakhri, Annealing effects on opto-electronic properties of Ag2O films growth using thermal evaporation techniques, Int. J. Nanoelectronics and Materials 9 (2016) 93-102.
Google Scholar
[14]
N.F. Habubi1, A. N. Abd, Mohammed O. Dawood and A. H. Reshak, Fabrication and Characterization of a p-AgO/PSi/n-Si Heterojunction for Solar Cell Applications, Silicon.10 (2018) 371–376.
DOI: 10.1007/s12633-016-9457-1
Google Scholar
[15]
E.T. Salim, H.T Halboos, Synthesis and physical properties of Ag doped niobium pentoxide thin films for Ag-Nb2O5/Si heterojunction device, Materials Research Express 6(6) (2019) 066401.
DOI: 10.1088/2053-1591/ab07d3
Google Scholar
[16]
R. A. Ismail, K. Z. Yahya and O.A. Abdulrazaq, Preparation and Photovoltaic Properties of Ag2O/Si Isotype Heterojunction, Surface Review and Letters, 12 (2005) 299–303.
DOI: 10.1142/s0218625x05007074
Google Scholar
[17]
E. T Salim, A. I Hassan, S. A Naaes, Effect of gate dielectric thicknesses on MOS photodiode performance and electrical properties, Materials Research Express, 6(8) (2019) 086416.
DOI: 10.1088/2053-1591/ab1bc2
Google Scholar
[18]
N. R. C. Raju, K J. Kumar & A Subrahmanyam, Physical properties of silver oxide thin films by pulsed laser deposition: effect of oxygen pressure during growth, J. Phys. D: Appl. Phys. 42 (2009) 135411 (6p).
DOI: 10.1088/0022-3727/42/13/135411
Google Scholar
[19]
C. Chen, Y. Huang, K. Huang, E. A. Ayalew, L. Chao, Controlled oxidation state of silver oxide thin films deposited by an integrated anode layer ion source ion beam sputter module, Nuclear Instruments and Methods in Physics Research. 412 (2017) 41–45.
DOI: 10.1016/j.nimb.2017.09.011
Google Scholar
[20]
M. M Hassan, M. A Fakhri, S. Aldeen Adnan, Structural and Morphological Properties of Nano Photonic Silicon Structure for Photonics Applications, Defect and Diffusion Forum, 398 (2020) 29-33.
DOI: 10.4028/www.scientific.net/ddf.398.29
Google Scholar
[21]
F.E. Weichman, Photoconductivity in Ag2O, PhysStat Sol. 5 (1964) 515–519.
Google Scholar
[22]
M. M. Hassan, M. A. Fakhri, 2-D of Nanophotonic Silicon Fabrication for Sensing Application, Digest Journal of Nanomaterials and Biostructures, 14(4) (2019) 873-878.
Google Scholar
[23]
E. Lund, A. Galeckas, A. Azarov, E. V. Monakhov & B.G. Svensson, Photoluminescence of reactively sputtered Ag2O films, Thin Solid Films. 536 (2013) 156–159.
DOI: 10.1016/j.tsf.2013.04.026
Google Scholar
[24]
M.A. Muhsien & H. H. Hamdan, Preparation and characterization of p-Ag2O/n-Si Heterojunction devices produced by rapid thermal oxidation, Energy Procedia.18 (2012) 300–311.
DOI: 10.1016/j.egypro.2012.05.041
Google Scholar
[25]
M. A Fakhri, A.W Abdulwahhab, S. M Kadhim, M.S Alwazni, S. A Adnan, Thermal oxidation effects on physical properties of CuO2 thin films for optoelectronic application, Materials Research Express, 6(2) (2018) 026429.
DOI: 10.1088/2053-1591/aaf217
Google Scholar
[26]
S.B. Rivers, G. Bernhardt, M.W. Wright, D.J. Frankel, M.M. Steeves, and R.J. Lad, Structure, conductivity, and optical absorption of Ag2−𝑥O films, Thin Solid Films. 515 (2007) 8684–8688.
DOI: 10.1016/j.tsf.2007.03.139
Google Scholar
[27]
A.S Ibraheam, JM Rzaij, Makram A Fakhri, AW Abdulwahhab, Structural, optical and electrical investigations of Al:ZnO nanostructures as UV photodetector synthesized by spray pyrolysis technique, Materials Research Express 6(5) (2019) 055916.
DOI: 10.1088/2053-1591/ab06d4
Google Scholar
[28]
Z.J. Jiang, C.Y. Liu and L.W. Sun, Catalytic properties of silver nanoparticles supported on silica spheres, J Phys Chem. 109(5) (2005) 1730-1735.
DOI: 10.1021/jp046032g
Google Scholar
[29]
B. A. Badr, N. H. Numan, F.G. Khalid, M. A. Fakhri, A. W. Abdulwahhab, All optical investigations of copper oxide for detection devices, Journal of Ovonic Research 15(1) (2019) 53-59.
Google Scholar
[30]
S. Ravichandran, V. Paluri, G. Kumar, K. Loganathan & B. R. K. Venkata, A novel approach for the biosynthesis of silver oxide nanoparticles using aqueous leaf extract of Callistemon lanceolatus (Myrtaceae) and their therapeutic potentialJournal of Experimental Nanoscience. 11(2016) 445-458.
DOI: 10.1080/17458080.2015.1077534
Google Scholar
[31]
D. Büchel, C. Mihalcea, T. Fukaya, N. Atoda, and J. Tominaga, Sputtered silver oxide layers for surface-enhanced Raman spectroscopy, Appl Phys Lett. 79 (2001) 620-622.
DOI: 10.1063/1.1389513
Google Scholar
[32]
Q. Q. Mohameed, F. A. Hattab& M. A. Fakhry, Effect of Substrate Temperature on Structural Characteristics of Nano Silver Oxide Prepared by Pulsed-Laser Deposition, IJAP. 11(2015) 33-36.
Google Scholar
[33]
R. Rebelo, S.V. Calderon, R. Fangueiro, M. Henriques & S.Carvalho, Influence of oxygen content on the antibacterial effect of Ag-O coatings deposited by magnetron sputtering, Surface & Coatings Technology.305 (2016)1-10.
DOI: 10.1016/j.surfcoat.2016.07.064
Google Scholar
[34]
O. A. Abdulrazzaq, E. T Saleem, Inexpensive near-IR photodetector, Turkish Journal of Physics 30 (2006) 35-39.
Google Scholar
[35]
M. Bielmann, P. Schwaller, P. Ruffieux, O. Groning, L. Schlap- ¨ bach, and P. Groning, AgO investigated by photoelectron ¨ spectroscopy: evidence for mixed valence, Physical Review B 65(23) (2002) Article ID 235431, 5 pages.
DOI: 10.1103/physrevb.65.235431
Google Scholar
[36]
E .T. Salim, Construction of SnO2/SiO2/Si Heterojunction and its Lineup Using I-V and C-V Measurements, International Journal of Modern Physics B 25(29) (2011) 3863–3869.
Google Scholar
[37]
M. R. Das &P. Mitra, Microstructural, Optical and Ethanol Sensing Characteristics of CBD-synthesised AgO Thin Film: Influence of Bath Temperature, Journal of Physical Science. 28(2)(2017)127–141.
DOI: 10.21315/jps2017.28.2.9
Google Scholar
[38]
Y. C. Her, Y. C. Lan, W. C. Hsu, and S. Y. Tsai, Effect of constituent phases of reactively sputtered AgO𝑥 film on recording and readout mechanisms of super-resolution nearfield structure disk, Journal of Applied Physics 96(3) (2004) 1283–1288.
DOI: 10.1063/1.1767978
Google Scholar
[39]
Z.T. Salim, U. Hashim, M.K.M. Arshad & M.A. Fakhri, Simulation, Fabrication and Validation of Surface Acoustic Wave Layered Sensor Based on ZnO/IDT/128° YX LiNbO3, Int. J. Appl. Eng.Res.11 (2016) 8785–8790.
Google Scholar
[40]
K. Z. Yahia, Study Optoelectronic Properties of Ag2O Heterojunction Prepered by Thermal Oxidation Technique, Eng.&Tech. 26(5) (2008) 570-579.
Google Scholar
[41]
I. A. Hamad, R. I. Khaleel, A. M. Raoof, Structural and Optical Properties for Nanostructure (Ag2O/Si & Psi) Films for Photodetector Applications, Baghdad Science Journal, 16 (4) (2019) 1036-142.
DOI: 10.21123/bsj.2019.16.4(suppl.).1036
Google Scholar
[42]
M. E. Kimura, M. Janczarek, Z. Bielan, D. Zhang, K.Wang, A. M.Szczupak, and E. Kowalska, Photocatalytic and Antimicrobial Properties of Ag2O/TiO2 Heterojunction, ChemEngineering 3(3), (2019) 1-18.
DOI: 10.3390/chemengineering3010003
Google Scholar
[43]
J. F. Dierson and C. Rousselot, Stability of reactively sputtered silver oxide films, Stability of reactively sputtered silver oxide films, Surface and Coatings Technology, 200(1–4) (2005) 276–279.
DOI: 10.1016/j.surfcoat.2005.02.005
Google Scholar
[44]
K. Manikandana, P. Mani, C. Surendra Dilip, S. Valli, P. Fermi Hilbert Inbaraj & J. Joseph Prince, Effect of complexing agent TEA: The structural, morphological, topographical and optical properties of FexSx nano thin films deposited by SILAR technique, Applied Surface Science. 288 (2014) 76– 82.
DOI: 10.1016/j.apsusc.2013.09.118
Google Scholar
[45]
Y. Ida, S. Watase, T. Shinagawa et al., Direct electrodeposition of 1.46 eV bandgap silver(I) oxide semiconductor films by electrogenerated acid, Chemistry of Materials 20(4) (2008) 1254–1256.
DOI: 10.1021/cm702865r
Google Scholar
[46]
Vladimiro Scatturin, Pier Luigi Bellon, Alvin J. Salkind, The Structure of Silver Oxide Determined by Means of Neutron Diffraction , Journal of the Electrochemical Society 9 (1961) 108.
DOI: 10.1149/1.2428229
Google Scholar
[47]
L. Zhang, Y. Fang, and P. Wang, Experimental and DFT theoretical studies of surface enhanced Raman scattering effect on the silver nano arrays modified electrode, Spectrochimica Acta A 93 (2012) 363–366.
DOI: 10.1016/j.saa.2012.02.013
Google Scholar
[48]
XY Gao, HL Feng, JM Ma, ZY Zhang, JX Lu, Analysis of the dielectric constants of the Ag2O film by spectroscopic ellipsometry and single-oscillator model, Physica B. 405 (2010) 1922–(1926).
DOI: 10.1016/j.physb.2010.01.076
Google Scholar
[49]
S. Marouf, A. Beniaiche, H. Guessas & A. Azizi, Morphological, structural and optical properties of ZnO thin films deposited by dip coating method, Materials Research. 20(1) (2017) 88-95.
DOI: 10.1590/1980-5373-mr-2015-0751
Google Scholar