DFT Study of New Donor-π-Acceptor Materials Based on Thieno[2,3-b] Indole Candidate for Organic Solar Cells Application

Article Preview

Abstract:

In present search, we report theoretical analysis by using DFT (TD-DFT)-B3LYP with 6-31G (d, p) level on the geometries, optoelectronic and absorption characteristics of novel a series of the donor-π-acceptor dyes. Their π-conjugated bridge is based on the thiophene, benzene, pyridine, and pyrazine, the thieno [2,3-b] indole was used as an electron donor (D) and the acid 2-cyanoacrylic was used as an electron acceptor (A) group. The theoretical information of the electronic structures such as energy levels (HOMO and LUMO) and energy gap of the molecules is based on study the dyes in organic solar cells. Consequently the energy levels, energy gap, photovoltaic properties, quantum chemical and absorption parameters of all the dyes have been computed and reported. The calculations show that the dyes under study can theoretically be good photosensitizers in DSSCs. Also, the results show that the LUMO levels of all dyes design lie over the conduction band (Ecb) of the semiconductors TiO2 (or PC70BM) likewise the HOMO levels lie under the decrease potential vitality of the (electrolytes) comparing to ability of electron transfer from the molecular dye excited state to TiO2 (or PC70BM) and chargeerenewal after photo-oxidation process, separately.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1002)

Pages:

221-229

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Xu, G. Liang, L. Wang, W. Xu, W. Cui, H. Zhang, Z. Li, DFT Studies on the electronic structures of indoline dyes for dye-sensitized solar cells, J. Serb. Chem. Soc. 75 (2) (2010) 259-269.

DOI: 10.2298/jsc1002259x

Google Scholar

[2] H. Sadkia, M. N. Bennania, M. Hamidib, M. Bouachrine, New materials based on diketo-pyrrolo-pyrrole for Solar cells application, J. Mater. Environ. Sci. 5 (S1) (2014) 2156-2162.

Google Scholar

[3] F. A. AL-Temimei, A. S. Alaboodi1, Design and Study of Electronic Structural and Corrosion Inhibitory Action of New π-Conjugated Materials for Medical and Solar Cells Applications, Indian Journal of Forensic Medicine & Toxicology, 13 (4) (2019) 908-914.

DOI: 10.5958/0973-9130.2019.00413.4

Google Scholar

[4] M. Hachi, S. El Khattabi, A. Fitri, A.T. Benjelloun, M. Benzakour, M. Mcharfi1, M. Hamidi, M. Bouachrine, DFT and TD-DFT studies of the π -bridge influence on the photovoltaic properties of dyes based on thieno[2,3-b]indole,, J. Mater. Environ. Sci., 9 (4) (2018)1200-1211.

DOI: 10.1007/s11164-018-3674-8

Google Scholar

[5] K. D. Seo, H. M. Song, M. J. Lee, M. Pastore, C. Anselmi, F. D. Angelis, M. K. Nazeeruddin, M. Gräetzel, H. K. Kim, Coumarin dyes containing low-band-gap chromophores for dye-sensitised solar cells, Dyes and Pigments, 90 (2011) 304-310.

DOI: 10.1016/j.dyepig.2011.01.009

Google Scholar

[6] M. Bouachrine, S. M. Bouzzine, M. Hamidi,, J. P. Lere Porte, F. Serein-Spirau, J. M. Sotiropoulos, K. Miqueu, Molecular Design of New π-Conjugated Materials Based on Thiadiazolothienopyazine for Organic Solar Cells, J. Mater. Environ. Sci. 1 (2) (2010) 78-83.

DOI: 10.1016/j.jscs.2013.01.003

Google Scholar

[7] F. A. Mohammed, H. I. Abbood, Electronic Structure of Vanadium Tetrachloride Di-Hydroxyl Metal Complex, Journal of Engineering and Applied Sciences, 13 (23) (2018) 9823-9830.

Google Scholar

[8] W. Fan, D. Tan, Q. Zhang, H. Wang, Computational study of diketopyrrolopyrrole based organic dyes for dye sensitized solar cell applications, J. Mol. Graph. Model,57 (2015) 62-69.

DOI: 10.1016/j.jmgm.2015.01.006

Google Scholar

[9] W. Koch, M. C. Holthausen, A Chemist's, Guide to Density Functional Theory, Second Edition, Wiley-VCH Verlag GmbH, Weinheim, (2001).

Google Scholar

[10] R. G. Parr, W. Yang, Density-functional Theory of Atoms and Molecules" Oxford University Press, New York, (1989).

Google Scholar

[11] K. L. Schuchardt, B. T. Didier, T. Elsethagen, L. Sun, V. Gurumoorthi, J. Chase Li, J. T. L. Windus, Basis Set Exchange: A Community Database for Computational Sciences, J. of Chemical Information and Modeling, 47 (2007) 1045-1052.

DOI: 10.1021/ci600510j

Google Scholar

[12] C. A. Tsipis, DFT flavor of coordination chemistry, Coordination Chemistry Reviews, 272 (2014) 1-29.

DOI: 10.1016/j.ccr.2014.02.023

Google Scholar

[13] R. T. Morrison, R. N. Boyd, Organic Chemistry, 6th Edition, New York University, (2007).

Google Scholar

[14] M. Larif, T. Abram, L. Bejjit, M. Bouachrine, T. Lakhlifi, New materials based on imidazo [4,5-b]pyridine derivatives candidates for optoelectronic device applications: Theoretical investigations, Journal of Chemical and Pharmaceutical Research, 6(11) (2014) 410-419.

Google Scholar

[15] R. Skonieczny, J. Makowiecki, B. Bursa, A. Krzykowski, M. Szybowicz, haracterization of titanyl phthalocyanine (TiOPc) thin films by microscopic and spectroscopic method, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 191 (2018) 203-210.

DOI: 10.1016/j.saa.2017.10.034

Google Scholar

[16] F. A. AL-Temimei, A. H. O. ALkhyayatt, A DFT/TD-DFT Investigation on the Efficiency of New Dyes Based on Ethyl Red Dye as a Dye-Sensitized Solar Cell Light-Absorbing Material, Optic, 163920 (2019).

DOI: 10.1016/j.ijleo.2019.163920

Google Scholar

[17] A. El Alamy, A. Amine, S. M. Bouzzine, M. Lachgar, M. Hamidi, A. Elhamzi, M. Bouachrine, DFT study of small compounds based on thiophene and benzo[1,2,5] thiadiazole for solar cells: correlation-structure/electronic properties, Journal of Materials and Environmental Sciences,.8(11) (2017) 3897-3905.

Google Scholar