Synthesis of Hg2Sr2-xBaxCa2Cu3O10 Superconductor and Study the Structure and Electrical Properties

Article Preview

Abstract:

Compound Hg2Sr2-xBaxCa2Cu3O10 high temperature superconductor looks like (HTSC) has been prepared as a pellet by two step solid state reaction with a certain substitution percentages (0.5, 1,1.5,2) of Ba compensation rate of Sr respectively using appropriate weight of pure material Hg2O3, Sr(NO3)2, Ba(NO3)2, CaCO3, and Cu(NO3)2 proportional to their molecular weight. XRD used for study structure properties, a computer program was used to calculation of spike dimensions the lattice parameters a, b and c shows Tetragonal, Electrical resistivity at x= 1.5 of Ba are obtained when the best value of Tc= 142 K.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1002)

Pages:

230-238

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Onnes, The superconductivity of mercury, comm. Phys. Lab. Univ. leaden Nos. 1991,pp.122-124.

Google Scholar

[2] B. Batlogg, Physical Properties of High – Tc Superconductors, physic, 1991,pp.42-44.

Google Scholar

[3] S.R. Ghorbani, Structural and Electrical Transport properties of Doped Nd-123 superconductors, Ph.D thesis, Royal Institute of Technology, Stockholm, 2002,pp.47-57.

Google Scholar

[4] S. Ochiai, H. Okuda, M. Sugano, M. Hojo, K. Osamura, T. Kuroda, K. Itoh, H.Kitaguchi, H.Kumakura and H. Wad, 'Analysis of critical current distribution of bent Bi2223 conposite tapes by unifying parameter approach and its application to the description of average critical current-bending strain relation near the average irreversible strain ',.Supercond. Sci.Techno. 2, (2010),23.

DOI: 10.1088/0953-2048/23/2/025006

Google Scholar

[5] Souheila Chamekh, Abderrahmane Bouabellou The Effects of Magnetic Dopant on the Structural and Electrical Properties in Superconducting YBaCu3O7−δ Ceramic, Advances in Chemical Engineering and Science.8 (2018) 1- 10.

DOI: 10.4236/aces.2018.81001

Google Scholar

[6] C.W. Chu,* Y.Y. Xue, Z.L. Du, Y.Y. Sun, L. Gao, 'Supercoductivity up to 126 Kelven Interstitially Doped Ba2Can-1CunOx [02(n-1)n_ Ba]',- Downloaded from www.sciencemag.org on July 2, (2009).

Google Scholar

[7] H.Maeda,Y.Tanaka,Fukatomi,T.Asano,Jap.J. Appl.Phys.27 (1988) L209.

Google Scholar

[8] I.Verma ,R. Rawat, D..M.Phase,B.Das J of superconductivity and Novel Magnetism,. V25,pp.85-90, (2012).

Google Scholar

[9] A. Schilling, M.Gantoni, H.V. Niessen and H.R. Otl: Phys. 215 (1993)1-11.

Google Scholar

[10] I. E. Chew, Superconducting Transformer Design and Construction, A thesis Masrter of Engineering in Electrical and Electronic Engineering University of Canterbury, Christchurch, New Zealand, March. 2010.

Google Scholar

[11] Ye Zhu, Tem Characteracterization of Microstructure and Chemistry in Magnesium Diboride Superconducter, A Doctor of philosophy (Materials Science ) dissertation University of Wisconsin – Madison ,(2008).

Google Scholar

[12] M. M. Abbass Effect of the electron beam and laser radiation on Tc of y1-x(Gd,pr)xBa2-ySryCu307-y, Ph.D. Thesis, Baghdad University, (2003).

Google Scholar

[13] A.S. Aksan, M.A. Yakinci, M.E. Balci, Y. The single crystal superconducting Bi-2212 whiskers fabrication and their thermal transport propertis, J. OF ALLOYS AND COMPOUNDS, Elsevier Science. 502 (2010). 16-23.

DOI: 10.1016/j.jallcom.2010.04.153

Google Scholar

[14] S. Chamekh, A. Bouabellou, Y. Elerman, M. Kaya, and Dincer, Effects of Nickel Substitution on Crystalline Structure and Superconducting Properties of YBa2Cu3O7− δ Ceramics. Journal of New Technology and Materials. 7 (2017) 22-29.

DOI: 10.12816/0044599

Google Scholar

[15] B John Fredrich Muller, The development of SQUID- based gradiometer,, MSC thesis, Stellenbosch University, (2010).

Google Scholar

[16] S. Eckroad, ‏-Program on Technology Innovation: a Superconducting DC Cable"1020458 Final Report, - EPRI ELECTRIC POWER RESEARCHINTITUTE Project Manager December, (2009).

Google Scholar

[17] V.N. Vieria, P. pureur, Jschaf, phys RevB, 66 (2002) 2450.

Google Scholar

[18] E.wiely, optical interferometry, ,New York, 1998.

Google Scholar

[19] M. A. Habeeb, Dielectric and optical properties of (PVAc-PEG-Ber) biocomposites ,, Journal of Engineering and Applied Sciences 9, (2014) 102-108.

Google Scholar

[20] D. Basil, M. Al-Hilli, M. Noori, Structural and electrical properties of CuLayFe2-yO4 , Iraqi Journal of Science, 11 (2013)102-109.

DOI: 10.30723/ijp.v11i22.358

Google Scholar

[21] R. Septawendar. Low-temperature Crystallization at 700Cºof MgAl2O4. Journal of Ceramic Processing Research, 15 (2014) 530-534.

Google Scholar

[22] G. Li, D.-b. Huang, S.-w. Jin, Y.-q. Ma, and X.-g. Li, Sol. Stat. Com. 150 1737, (2010) 193.

Google Scholar

[23] I. E. Chew Superconducting Transformer Design and Construction, A thesis Master of Engineering in Electrical and Electronic Engineering University of Canterbury, Christchurch, New Zealand, March, 2010.

Google Scholar

[24] S. Rasul, S. Suzuki, S. Yamaguchi, M. Miyayama, High capacity positive electrodes for secondary Mg-ion batteries. Electrochim Acta (2012) 243–249.

DOI: 10.1016/j.electacta.2012.03.095

Google Scholar

[25] M. Mahtail. S. Chamekh, Superconductive and Magnetic Properties of Doped Bi2Sr2Ca2Cu2Cu3O10+ Cermics Doped by Pb .J Supercond Nov. Magn. (2011) 351-355.

DOI: 10.1007/s10948-010-1008-1

Google Scholar