Impact and Flexural Strength of Kaolinite / Glass Fibers Reinforced Heat-Cured Acrylic Denture

Article Preview

Abstract:

Nowadays, most materials used to manufacture denture base are heat-cured PMMA, to overcome the low strength of this material, different methods were used to strengthen the denture base and enhanced their properties. This study investigated the effect of glass fiber woven powder kaolinite (Al2Si2O5 (OH) 4) to influence and strength of flexure. Acrylic and kaolinite powders were mixed together and mixed again with acrylic liquid to prepare hybrid composite samples. Woven glass fiber composite was prepared by inserting woven glass fiber between the two halves of the dough. PMMA reinforced by (0, 20) wt% of woven glass fibers or/and (0, 2, 5, 7) wt% of kaolinite powder to prepare eight experimental groups (n= 7). The fractured surface was an evaluation by scanning electron microscope (SEM). X-ray diffraction and Fourier transforminfrared spectra FTIR tests were used to examine kaolinite powder. Samples were tested with the use of a Charpy testing machine for impact test and Instron tensile testing machine for flexural test after storage in water for 10 days at 37 °C. The results showed woven glass fibers with clay powder together significantly increased the mechanical properties of PMMA.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1002)

Pages:

340-349

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Thomas Meng, Jr, DDS; A. Mark Latta, DMD, MS, Physical Properties of Four Acrylic Denture Base Resins, The Journal of Contemporary Dental Practice. 6(4), (2005) 1-5.

DOI: 10.5005/jcdp-6-4-93

Google Scholar

[2] S. Laura.Acosta-Torres, M. Luz Lopez-Marin, R. Elvira Nunez-Antita, Geonoveva Hernandez-Padron, and M. Victor Castano, Biocompatible Metal-Oxide Nanoparticles: Nanotechnology Improvement of Conventional Prosthetic Acrylic Resins, Journal of Nanomaterials. 2011(2011) 1-8.

DOI: 10.1155/2011/941561

Google Scholar

[3] E. T. Eugenia, C. N. Aurelia, N. Gheorghe , Y. A.Hassan, M. C. Corina, Poly(methyl methacrylate) with TiO2 nanoparticles inclusion for stereolitographic complete denture manufacturing the fututre in dental care for elderly edentulous patients?. Journal of Dentistry. 59, (2017) 68–77.

DOI: 10.1016/j.jdent.2017.02.012

Google Scholar

[4] T. Kanie, K. Fujii, H. Arikawa, K. Inoue, Flexural Properties and Impact Strength of Denture Base Polymer Reinforced With Woven Glass Fibers, Dental Materials Journal. 16, (2000) 150-158.

DOI: 10.1016/s0109-5641(99)00097-4

Google Scholar

[5] M. K. Abood, E. T. Salim, and J. A. Saimon, Niobium Pentoxide Thin Film Prepared using Simple Colloidal Suspension for Optoelectronic Application, International Journal of Nanoelectronics and Materials. 11(2), (2018) 127‐134.

Google Scholar

[6] Makram A Fakhri, Y Al-Douri, U Hashim, ET Salim, Annealing temperature effects on morphological and optical studies of nano and micro photonics lithium niobate using for optical waveguide applications, Australian Journal of Basic and Applied Sciences. 9, (2015) 128-133.

DOI: 10.1016/j.solener.2015.07.044

Google Scholar

[7] O.A. Ahmed, M.A. Hazizan, A.A. Zainal, Pmma Denture Base Composites Reinforced by Nitrile Rubber and Ceramic Fillers, Polymer and polymer composites. 24 (1), (2016) 71-79.

DOI: 10.1177/096739111602400109

Google Scholar

[8] PK Vallittu, W Lassila, Effect of metal strengthener's surface roughness on fracture resistance of acrylic denture base material, J Oral Rehabil. 19, (1992) 385-391.

DOI: 10.1111/j.1365-2842.1992.tb01580.x

Google Scholar

[9] A. Inanaga, S. Naka, Y. Takahashi, D. Tchii, M. Yoshinaga, T. Habu, K. Miyazaki, Studies on Denture Base Resins Reinforced With Carbon or Aramid Fiber. Part 1. The Effectiveness of Including Fiber and Surface Treatments. Journal Jpn Prosthodont Soc. 37, (1993) 1083-1090.

DOI: 10.2186/jjps.37.1083

Google Scholar

[10] V. S. Manali, K. Meenakshi, P. Vikas, S.Vivek, The effect of incorporating various reinforcement materials on flexural strength and impact strength of polymethylmethacrylate: A meta-analysis, The journal of Indian prosthdontic socity. 19 (2), (2019) 101-112.

DOI: 10.4103/jips.jips_313_18

Google Scholar

[11] D.L. Gutterridge , Reinforcement of Poly (methyl methacrylate) With Ultra-High-Modulus Polyethylene Fibers, Journal of Dentistry. 20, (1992) 50-54.

DOI: 10.1016/0300-5712(92)90012-2

Google Scholar

[12] A. Samadzadeh, G. Kugel, E. Hurley, A. Aboushala, Fracture Strengths of Provisional Restorations Reinforced With Plazma- Treated Woven Polyethylene Fiber, Journal of Prosthetic Dentistry.78, (1997) 447-450.

DOI: 10.1016/s0022-3913(97)70058-1

Google Scholar

[13] S.B. Sehajpal, V.K. Sood, Effect of Metal Fillers on Some Physical Properties of Acrylic Resin, Journal of Prosthetic Dentistry. 61(6), (1989) 746-51.

DOI: 10.1016/s0022-3913(89)80055-1

Google Scholar

[14] A. Sodagar, S. Khalil, M. Zaman Kassaee, A. Saffar Shahroudi, B. Pourakbari and A. Bahador, Antimicrobial properties of poly (methyl methacrylate) acrylic resins incorporated with silicon dioxide and titanium dioxide nanoparticles on cariogenic bacteria, Journal of Orthodontic Science. 5, (2016) 7-13.

DOI: 10.4103/2278-0203.176652

Google Scholar

[15] N.M. Ayad, M.F. Badawi, A.A. Fatah, Effect of Reinforcement of High Impact Acrylic Resin With Zirconia on Some Physical and Mechanical Properties, Rev. de Clin. Pesq. Odontol. Set/dez. 4, (2008) 145-151.

Google Scholar

[16] A.Wafaa Hussain, Furqan Salim Hashim, Effect of Additives on Impact Strength of Denture Base Resin, Iraqi Journal of Science. 58(2B), (2017) 860-867.

Google Scholar

[17] N.V. Asar, H. Albayrak, T. Korkmaz, I.Turkyilmaz, Influence of Various Metal Oxides on Mechanical and Physical Properties of Heat-Cured Poly Methyl Methacrylate Denture Base Resins, Journal Adv.Prosthodont. 5, (2013) 241-247.

DOI: 10.4047/jap.2013.5.3.241

Google Scholar

[18] B.S. Qasim, A.A. Al Kheraif, R. Ramakrishaniah, An investigation into the impact and flexural strength of light cure denture resin reinforced with carbon nanotubes, J. World Appl. Sci. 18, (2012) 808-812.

Google Scholar

[19] W Yu, X Wang, Q Tang, M Guo, J Zhao, Reinforcement of denture base PMMA with ZrO2 nanotubes. J. Mech. Behav. Biomed Mater. 32, (2014) 192-197.

Google Scholar

[20] C. Aydin, H. Yilmaz, A. Caglar, Effect of Glass Fiber Reinforcement on the Flexural Strength of Different Denture Base Resins, Quintessence International. 33, (2002) 457-463.

Google Scholar

[21] Sang-Il Lee, Chang-Whe Kim, Young-Jun Lim,Myung-Joo Kim, Suk-Dae Yun, Strength of Glass Fiber Reinforced PMMA Resin and Surface Roughness Change After Abrasion Test, Journal Korean Prosthodont. 45(3), (2007) 310-320.

Google Scholar

[22] Vallittu, K.Pekka, Narva, Katja, Impact Strength of a Modified Continuous Glass Fiber- Poly(methyl Methacrylate), International Journal of Prosthodontics. 10(2), (1997) 142-148.

Google Scholar

[23] D Paul, L Robeson, Polymer nanotechnology: Nanocomposites. Polymer 49, (2008) 3187–3204.

DOI: 10.1016/j.polymer.2008.04.017

Google Scholar

[24] Q. Mohsen, A. El-maghraby, Characterization and assessment of Saudi clays raw material at different area. Arabian Journal of Chemistry .3(4), (2010) 271-277.

DOI: 10.1016/j.arabjc.2010.06.015

Google Scholar

[25] Vallittu, K. Pekka, Narva, Katja, Impact Strength of a Modified Continuous Glass Fiber- Poly(methyl Methacrylate), International Journal of Prosthodontics. 10(2), (1997) 142-148.

Google Scholar

[26] Y.U. Sang-Hui, L.E. Yoon, O.H. Seunghan, C.H. Hye-Won, O.D. Yutaka, B.A. Ji-Myung, Reinforcing Effects of Different Fibers on Denture Base Resin Based on The Fiber Type, Concentration, and Combination, Dental Materials Journal. 3, (2012) 1039–1046.

DOI: 10.4012/dmj.2012-020

Google Scholar

[27] A.O. Alhareb, Z.A. Ahmed, Effect of Al2O3/ZrO2 Reinforcement on the Mechanical Properties of PMMA Denture Base, Journal Reinf. Plast. Compos. 30, (2011) 86-93.

DOI: 10.1177/0731684410379511

Google Scholar

[28] X.Y. Zhang, X.J. Zhang, Z.L. Huang, B.S. Zhu, R.R. Chen, Hybrid Effects of Zirconia Nanoparticles With Aluminum Borate Whiskers on Mechanical Properties of Denture Base Resin PMMA, Dental Materials Journal. 33, (2014) 141–146.

DOI: 10.4012/dmj.2013-054

Google Scholar

[29] S. Chen, W. Liang, Effects of Fillers on Fiber Reinforced Acrylic Denture Base Resins, Mid Taiwan Journal Med. 9, (2004) 203–210.

Google Scholar

[30] Crawford, R.J. Plastic Engineering, Pergamen press, 2nd edition, U.K. (1987).

Google Scholar

[31] D.William Callister, Jr. and G.David Rethwisch, Materials Science and Engineering an Introduction, eighth edition, (2009).

Google Scholar

[32] M. Mukhlis Ismail and A.Nasma Jaber, Structural Analysis and Magnetic Properties of Lithium-Doped Ni-Zn Ferrite Nanoparticle, J Supercond Nov Magn. 31, (2018) 1917–(1923).

DOI: 10.1007/s10948-017-4428-3

Google Scholar

[33] Makram A Fakhri, Evan T Salim, Ahmed W Abdulwahhab, U Hashim, Zaid T Salim, Optical properties of micro and nano LiNbO3 thin film prepared by spin coating, Optics & Laser Technology.103,(2018) 226-232.

DOI: 10.1016/j.optlastec.2018.01.040

Google Scholar

[34] Evan T. Ssalem, Ibrahim R. Agool, and Marwa A. Hassan, Construction of SnO2/SiO2/Si Heterojunction and its Lineup using I–V and C–V Measurements, International Journal of Modern Physics B. 25(29), (2011) 3863-3869.

DOI: 10.1142/s0217979211102022

Google Scholar

[35] Makram A Fakhri, Y Al-Douri, Uda Hashim, Evan T Salim, XRD Analysis and Morphological Studies of Spin Coated LiNbO3 Nano Photonic Crystal Prepared for Optical Waveguide Application, Advanced Materials Research. 1133, (2016) 457-461.

DOI: 10.4028/www.scientific.net/amr.1133.457

Google Scholar

[36] Marwa Abdul Muhsien, Evan T. Salem, Ibrahim R. Agool, Haidar Hamed Hamdan, Gas sensing of Au/n-SnO2/p-PSi/c-Si heterojunction devices prepared by rapid thermal oxidation, Appl Nanosci 4 (2014) 719-732.

DOI: 10.1007/s13204-013-0244-7

Google Scholar

[37] Makram A Fakhri, Evan T Salim, U Hashim, Ahmed W Abdulwahhab, Zaid T Salim, Annealing temperature effect on structural and morphological properties of nano photonic LiNbO3, J Mater Sci: Mater Electron 28 (2017) 16728-16735.

DOI: 10.1007/s10854-017-7586-y

Google Scholar

[38] Makram A Fakhri, Annealing Effects on Opto-electronic Properties of Ag2O Films growth using Thermal Evaporation Techniques, Int. J. Nanoelectronics and Materials 9 (2016) 93-102.

Google Scholar

[39] A. Tironi, M. A. Trezza , E. F. Irassar , A. N. Scian, Thermal treatment of kaolin: effect on the pozzolanic activity, Procedia Materials Science. 1, (2012) 343 – 350.

DOI: 10.1016/j.mspro.2012.06.046

Google Scholar

[40] U. Johansson, A. Holmgren, W. Forsling and R. L. Frost, Isotopic exchange of kaolinite hydroxyl protons: a diffuse reflectance infrared Fourier transform spectroscopy study, The Analyst. 123, (1998) 641-645.

DOI: 10.1039/a707060h

Google Scholar

[41] Vipul Asopa, S.Suresh, Meenakshi Khandelwal, Vivek Sharma, S. Shivalika Asopa, and Laxman Singh Kaira, A Comparative Evaluation of Properties of Zirconia Reinforced High Impact Acrylic Resin With That of High Impact Acrylic Resin, The Saudi Journal for Dental Research. 6 (12), (2015) 146-151.

DOI: 10.1016/j.sjdr.2015.02.003

Google Scholar

[42] Heitor Luiz Ornaghi, Jr, Alexandre Sonaglio Bolner, Rudinei Fiorio, Ademir Jose Zattera, Sandro Campos Amico, Mechanical and Dynamic Mechanical Analysis of Hybrid Composites Molded by Resin Transfer Molding, Journal of Applied Polymer Science. 118, (2010) 887–896.

DOI: 10.1002/app.32388

Google Scholar

[43] M.M. Gad, A. Rahoma, A.M. Al-Thbity, A.S. ArRejaie, Influence of Incorporation of ZrO2 Nanoparticles on The Repair Strength of Polymethyl Methacrylate Denture Bases, Int. Journal Nanomedicine. 11, (2016) 5633-5643.

DOI: 10.2147/ijn.s120054

Google Scholar

[44] V. Naga Prasad Naidu, M. Ashok Kumar, G. Ramachandra Reddy, P. Noorunnisa Khanam, M. Mohan Reddy, K.V.P. Chakradhar, Tensile & flexural Properties of Sisal/Glass Fiber Reinforced Hybrid Composites, International Journal of Macromolecular Science. 1(1), (2011) 19-22. the optimum method for analyzing mineralogy, particularly clay mineralogy, is X-ray diffraction (XRD).

DOI: 10.1177/0731684407079347

Google Scholar

[45] Makram A Fakhri, Evan T Salim, MHA Wahid, U Hashim, Zaid T Salim, Optical investigations and optical constant of nano lithium niobate deposited by spray pyrolysis technique with injection of Li2CO3 and Nb2O5 as raw materials, J Mater Sci: Mater Electron 29 (2018) 9200-9208.

DOI: 10.1007/s10854-018-8948-9

Google Scholar