Magneto-Optical Measurements of Magnetic Nanoparticles Using Laser for Environmental Applications

Article Preview

Abstract:

The project presents the use of laser and magnetic nanoparticles like iron oxide (Fe3O4) in heavy metal detection in water. In this method, metal Nanomagnets particles result in a magnetic reagent for the rapid removal of heavy metals from solutions or water of magnitude to concentration 0.25wt%. This can be done by measuring the magneto-optical parameters (as a hysteric loop) of the solution as an indication of the change in concentrations of the detected heavy metal. The samples used in this work using the Tigris River water that supported from al-Wathba lab. water projects of the Baghdad water directorate at Baghdad-Iraq. Putting here a study of the effect of graphene and metal oxide such as cobalt and nickel which doped the ferrofluid (iron oxide) /polymer/water (Tigris river water) composite on the magneto-optical properties. The graphene adding had the best result in low threshold magnetic field which was 67mGauss, give the motive to use it in fast sensing and detecting of heavy metal in Tigris river water.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1002)

Pages:

498-507

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Ghernaout, Magnetic field generation in the water treatment perspectives: An overview, International Journal of Advanced and Applied Sciences, 5 (2018)193-203.

Google Scholar

[2] A. Othman, J. Sohaili, N. S. Supian, Methodologies Review of Magnetic Water Treatment As Green Approach of Water Pipeline System, Pertanika J. Sci. & Technol. 27 (2019) 281 - 296.

Google Scholar

[3] C. Nadejdea, M. Neamtua, D. Creangab, Environment-Friendly Magnetic Fluids for Wastewater Remediation - Synthesis and Characterization, Vol. 127 (2015) ACTA PHYSICA POLONICA A, Proceedings of the European Conference Physics of Magnetism, Pozna, (2014).

Google Scholar

[4] J. Wei, M. Duan, Y. Li, A. S. Nwankwegu, Y. , J. Jie Zhang, Concentration and pollution assessment of heavy metals within surface sediments of the Raohe Basin, China, Scientific Reports, 9(2019), Article number: 13100.

DOI: 10.1038/s41598-019-49724-7

Google Scholar

[5] Md. S. Bhuyan, M. Abu Bakar, Md. R.-Un-Nabi, V. Senapathi, S. Y. Chung, Md. S. Islam, Monitoring and assessment of heavy metal contamination in surface water and sediment of the Old Brahmaputra River, Bangladesh, Applied Water Science,  9(2019), Article number: 125.

DOI: 10.1007/s13201-019-1004-y

Google Scholar

[6] M. F. El-Amin, A. M. Saad, A. Salama,  S. Sun, Modeling and Analysis of Magnetic Nanoparticles Injection in Water-Oil Two-Phase Flow in Porous Media under Magnetic Field Effect, Geofluids, (2017), Article ID 3602593.

DOI: 10.1155/2017/3602593

Google Scholar

[7] M. Sharma, P. Kalita, K. K. Senapati, A. Garg, Study on Magnetic Materials for Removal of Water Pollutants, in Sonia Soloneski and Marcelo L. Larramendy(eds), Emerging Pollutants - Some Strategies for the Quality Preservation of Our Environment,(2018).

DOI: 10.5772/intechopen.75700

Google Scholar

[8] M. Cañedo-Argüelles, B. Kefford, and R. Schäfer, Salt in freshwaters: causes, effects, and prospects - introduction to the theme issue, Philos Trans R Soc Lond B Biol Sci. 374(2019) 20180002.

DOI: 10.1098/rstb.2018.0002

Google Scholar

[9] E. Szatyłowicz, I. Skoczko, Magnetic Field Usage Supported Filtration Through Different Filter Materials, Water, 11(2019)1584.

DOI: 10.3390/w11081584

Google Scholar

[10] H. Li, C. D. Smith, L.Wang, Z. Li, C. Xiong, R. Zhang, Combining Spatial Analysis and a Drinking Water Quality Index to Evaluate Monitoring Data, Int. J. Environ. Res. Public Health, 16 (2019)357.

DOI: 10.3390/ijerph16030357

Google Scholar

[11] R.Altenburger, W. Brack, R. M. Burgess, W. Busch, B. I. Escher, A. Focks, L. Mark Hewitt, B. N. Jacobsen, M. López de Alda, S. Ait-Aissa, T. Backhaus, A. Ginebreda, K. Hilscherová, J. Hollender, H. Hollert, P.A. Neale, T. Schulze, E.L. Schymanski, I.Teodorovic, A. J. Tindall, Gisela A. Umbuzeiro, B. Vrana, B. Zonja, M. Krauss, Altenburger et al., Future water quality monitoring: improving the balance between exposure and toxicity assessments of real-world pollutant mixtures, Environ Sci Eur,(2019) 31:12.

DOI: 10.1186/s12302-019-0193-1

Google Scholar

[12] M. K. Poshtegal, S. A. Mirbagheri, The heavy metals pollution index and water quality monitoring of the Zarrineh river, Iran, Environmental and Engineering Geoscience 25 (2019) 179-188.

DOI: 10.2113/eeg-1996

Google Scholar

[13] A. Misra, C. Zambrzycki, G. Kloker, A. Kotyrba, M. H. Anjass, I. F. Castillo, S. G. Mitchell, R. Güttel, C. Streb, Water Purification and Microplastics Removal using Magnetic Polyoxometalate-Supported Ionic Liquid Phases, Angew. Chem. Int. Ed. 58(2019) 1 – 6.

DOI: 10.1002/anie.201912111

Google Scholar

[14] J.M.D. Coey, Magnetism, and Magnetic Materials. Cambridge, UK: Cambridge University Press, (2009).

Google Scholar

[15] US Patent # 3215572 filed Oct 9, 1963 https://www.google.com/patents/US3215572.

Google Scholar

[16] W.Voit, K.Kim, W.Zapka, M.Muhammed, V.Rao, Magnetic behavior of coated superparamagnetic iron oxide nanoparticles in ferrofluids". MRS Proceedings. 676 (2011).

DOI: 10.1557/proc-676-y7.8

Google Scholar

[17] B.Roth, The Role of Magnetic Forces in Biology and Medicine, Exp Biol Med (Maywood). 236 (2011) 132–137.

DOI: 10.1258/ebm.2010.010236

Google Scholar

[18] Information on Physics Experiments, http://www.physicsexperiment.co.uk. Retrieved 2020-01-13.

Google Scholar

[19] D.Andelman, R.Rosensweig, The Phenomenology of Modulated Phases: From Magnetic Solids and Fluids to Organic Films and Polymers". In Tsori, Yoav; Steiner, Ullrich (eds.). Polymers, liquids, and colloids in electric fields: interfacial instabilities, orientation and phase transitions, Polymers, (2009)20–23.

DOI: 10.1142/9789814271691_0001

Google Scholar

[20] J.V.I. Timonen, M. Latikka, L. Leibler, R.H.A. Ras, and O. Ikkala, Switchable Static and Dynamic Self-Assembly of Magnetic Droplets on Superhydrophobic Surfaces,, Science, 341(2013) 253–257.

DOI: 10.1126/science.1233775

Google Scholar

[21] R.-J. Yang, H.-H. Hou, Y.-N. Wang, and L.-M. Fu, Micro-magnetofluidics in microfluidic systems: A review,, Sensors Actuators B Chem., vol. 224, p.1–15, (2016).

DOI: 10.1016/j.snb.2015.10.053

Google Scholar

[22] R.Elmars, New Applications of Heat and Mass Transfer Processes in Temperature-Sensitive Magnetic Fluids, Brazilian Journal of Physics, 25 (1995).

Google Scholar

[23] J. S. Mehta, R. Kumar, H. Kumar, H. Garg,  Convective Heat Transfer Enhancement Using Ferrofluid: A Review. J. Thermal Sci. Eng. Appl., 10(2018) 020801.

DOI: 10.1115/1.4037200

Google Scholar

[24] R.Azizian, E.Doroodchi, T.McKrell, J.Buongiorno, L.W.Hu, B.Moghtaderi,  Effect of magnetic field on laminar convective heat transfer of magnetite nanofluids. International Journal of Heat and Mass Transfer, 68(2014) 94-109.

DOI: 10.1016/j.ijheatmasstransfer.2013.09.011

Google Scholar

[25] M. Alsaady , R. Fu, Y.Yan, Z. Liu, S. Wu, R. Boukhanouf, An Experimental Investigation on the Effect of Ferrofluids on the Efficiency of Novel Parabolic Trough Solar Collector Under Laminar Flow Conditions, Heat Transfer Engineering, 40 (2019).

DOI: 10.1080/01457632.2018.1442309

Google Scholar

[26] M. Lajvardi, J. Moghimi-Rad, I. Hadi, A. Gavili, T. D. Isfahani, F. Zabihi, J. Sabbaghzadeh, Experimental investigation for enhanced ferrofluid heat transfer under magnetic field effect, Journal of Magnetism and Magnetic Materials, 322( 2010) 3508-3513.

DOI: 10.1016/j.jmmm.2010.06.054

Google Scholar

[27] C.Scherer, M.Figueiredo Neto, Ferrofluids: Properties and Applications, Brazilian Journal of Physics, 35 (2005)718–727.

DOI: 10.1590/s0103-97332005000400018

Google Scholar

[28] YX.Wang, Superparamagnetic iron oxide based MRI contrast agents: Current status of clinical application, Quantitative Imaging in Medicine and Surgery,1 (2011) 35–40.

Google Scholar

[29] F.Cengelli, D.Maysinger, F.Tschudi-Monnet, X.Montet, C.Corot, A.Petri-Fink, H.Hofmann, L.Juillerat-Jeanneret, Interaction of Functionalized Superparamagnetic Iron Oxide Nanoparticles with Brain Structures, Journal of PET, 318 (2006) 108–116.

DOI: 10.1124/jpet.106.101915

Google Scholar

[30] P.Chintamani, M.Shalini, S.Radha, Transient Optical Phenomenon in Ferrofluids, Procedia Engineering, 76 (2014) 74–79.

DOI: 10.1016/j.proeng.2013.09.250

Google Scholar

[31] F.Koehler, M.Fabian, M.Rossier, M.Waelle, E.Athanassiou, L.Limbach, R.Grass, D.Günther, W.Stark, Magnetic EDTA: Coupling heavy metal chelators to metal nanomagnets for rapid removal of cadmium, lead and copper from contaminated water". Chem. Commun. 32  (2009) 4862–4864.

DOI: 10.1039/b909447d

Google Scholar

[32] W.Yantasee, C.Warner, T.Sangvanich, R.Addleman, T.Carter, R.Wiacek, G.Fryxell, C.Timchalk, M.Warner, Removal of Heavy Metals from Aqueous Systems with Thiol Functionalized Superparamagnetic Nanoparticles, Environ. Sci. Technol., 41 (2007) 5114-5119.

DOI: 10.1021/es0705238

Google Scholar

[33] Information on Rayleigh Scattering, http://www.Hyperphysics.phy-astr.gsu.edu. Retrieved 2020-02-23.

Google Scholar