[1]
M. T. Yagub, T. K. Sen, S. Afroze, and H. M. Ang, Dye and its removal from aqueous solution by adsorption: a review,, Adv. Colloid Interface Sci. 209 (2014) 172–184.
DOI: 10.1016/j.cis.2014.04.002
Google Scholar
[2]
A. R. Cestari, E. F. S. Vieira, G. S. Vieira, and L. E. Almeida, Aggregation and adsorption of reactive dyes in the presence of an anionic surfactant on mesoporous aminopropyl silica,, J. Colloid Interface Sci. 309 (2007) 402–411.
DOI: 10.1016/j.jcis.2006.11.049
Google Scholar
[3]
V. S. Mane and P. V. V. Babu, Kinetic and equilibrium studies on the removal of Congo red from aqueous solution using Eucalyptus wood (Eucalyptus globulus) saw dust,, J. Taiwan Inst. Chem. Eng. 44 (2013) 81–88.
DOI: 10.1016/j.jtice.2012.09.013
Google Scholar
[4]
Y. Zhou, Z. Liang, and Y. Wang, Decolorization and COD removal of secondary yeast wastewater effluents by coagulation using aluminum sulfate, Desalination 225 (2008) 301–311.
DOI: 10.1016/j.desal.2007.07.010
Google Scholar
[5]
E. R. Bandala, M. A. Peláez, A. J. García-López, M. de J. Salgado, and G. Moeller, Photocatalytic decolourisation of synthetic and real textile wastewater containing benzidine-based azo dyes,, Chem. Eng. Process. Process Intensif. 47 (2008)169–176.
DOI: 10.1016/j.cep.2007.02.010
Google Scholar
[6]
B. E. Barragán, C. Costa, and M. C. Marquez, Biodegradation of azo dyes by bacteria inoculated on solid media, Dye. Pigment. 75 (2007) 73–81.
DOI: 10.1016/j.dyepig.2006.05.014
Google Scholar
[7]
Y. Zheng, G. Yao, Q. Cheng, S. Yu, M. Liu, and C. Gao, Positively charged thin-film composite hollow fiber nanofiltration membrane for the removal of cationic dyes through submerged filtration, Desalination 328 (2013) 42–50.
DOI: 10.1016/j.desal.2013.08.009
Google Scholar
[8]
Q. Liu, B. Yang, L. Zhang, and R. Huang, Adsorption of an anionic azo dye by cross-linked chitosan/bentonite composite, Int. J. Biol. Macromol. 72 (2015) 1129–1135.
DOI: 10.1016/j.ijbiomac.2014.10.008
Google Scholar
[9]
R. C. Bansal and M. Goyal, Activated carbon adsorption. CRC press, (2005).
Google Scholar
[10]
J.-S. Wu, C.-H. Liu, K. H. Chu, and S.-Y. Suen, Removal of cationic dye methyl violet 2B from water by cation exchange membranes, J. Memb. Sci. 309 (2008) 239–245.
DOI: 10.1016/j.memsci.2007.10.035
Google Scholar
[11]
R. Ahmad and R. Kumar, Adsorptive removal of congo red dye from aqueous solution using bael shell carbon, Appl. Surf. Sci. 257 (2010) 1628–1633.
DOI: 10.1016/j.apsusc.2010.08.111
Google Scholar
[12]
K. Nuithitikul, S. Srikhun, and S. Hirunpraditkoon, Kinetics and equilibrium adsorption of Basic Green 4 dye on activated carbon derived from durian peel: Effects of pyrolysis and post-treatment conditions, J. Taiwan Inst. Chem. Eng. 41 (2010) 591–598.
DOI: 10.1016/j.jtice.2010.01.007
Google Scholar
[13]
R.-L. Tseng, F.-C. Wu, and R.-S. Juang, Characteristics and applications of the Lagergren's first-order equation for adsorption kinetics, J. Taiwan Inst. Chem. Eng., vol. 41 (2010) 661–669.
DOI: 10.1016/j.jtice.2010.01.014
Google Scholar
[14]
M. Benavente, L. Moreno, and J. Martinez, Sorption of heavy metals from gold mining wastewater using chitosan, J. Taiwan Inst. Chem. Eng. 42 (2011) 976–988.
DOI: 10.1016/j.jtice.2011.05.003
Google Scholar
[15]
B. K. Nandi, A. Goswami, and M. K. Purkait, Adsorption characteristics of brilliant green dye on kaolin, J. Hazard. Mater., vol. 161 (2009) 387–395.
DOI: 10.1016/j.jhazmat.2008.03.110
Google Scholar
[16]
J. K. Gan, Y. S. Lim, N. M. Huang, and H. N. Lim, Boosting the supercapacitive properties of polypyrrole with chitosan and hybrid silver nanoparticles/nanoclusters, RSC Adv. 6 (2016) 88925–88933.
DOI: 10.1039/c6ra13697d
Google Scholar
[17]
W. S. W. Ngah, L. C. Teong, and M. Hanafiah, Adsorption of dyes and heavy metal ions by chitosan composites: A review, Carbohydr. Polym. 83 (2011) 1446–1456.
DOI: 10.1016/j.carbpol.2010.11.004
Google Scholar
[18]
M. K. Younis, A. Z. Tareq, and I. M. Kamal, Optimization Of Swelling, Drug Loading And Release From Natural Polymer Hydrogels, IOP Conference Series: Materials Science and Engineering, 454 (2018) 12017.
DOI: 10.1088/1757-899x/454/1/012017
Google Scholar
[19]
U. Filipkowska, E. Klimiuk, S. Grabowski, and E. Siedlecka, Adsorption of reactive dyes by modified chitin from aqueous solutions," Polish J. Environ. Stud. 11 (2002) 315–324.
Google Scholar
[20]
A. Z. Tareq, M. S. Hussien, A. M. Mustafa, and A. R. Mahmood, Extracting Cellulose Fibers from Rice Husks to Prepare a pH Sensitive Hydrogel with Sodium Alginate, in Recent Researches in Earth and Environmental Sciences, Springer, (2019), 113–124.
DOI: 10.1007/978-3-030-18641-8_8
Google Scholar
[21]
K. Mukherjee, T.-H. Teng, R. Jose, and S. Ramakrishna, Electron transport in electrospun TiO 2 nanofiber dye-sensitized solar cells, Appl. Phys. Lett. 95 (2009) 12101.
DOI: 10.1063/1.3167298
Google Scholar
[22]
T. Kisumi, A. Tsujiko, K. Murakoshi, and Y. Nakato, Crystal-face and illumination intensity dependences of the quantum efficiency of photoelectrochemical etching, in relation to those of water photooxidation, at n-TiO2 (rutile) semiconductor electrodes, J. Electroanal. Chem. 545 (2003) 99–107.
DOI: 10.1016/s0022-0728(03)00114-1
Google Scholar
[23]
S. P. Albu, A. Ghicov, J. M. Macak, R. Hahn, and P. Schmuki, Self-organized, free-standing TiO2 nanotube membrane for flow-through photocatalytic applications, Nano Lett. 7 (2007) 1286–1289.
DOI: 10.1021/nl070264k
Google Scholar
[24]
Y. X. Zhang, G. H. Li, Y. X. Jin, Y. Zhang, J. Zhang, and L. D. Zhang, Hydrothermal synthesis and photoluminescence of TiO2 nanowires, Chem. Phys. Lett., 365 (2002) 300-304.
DOI: 10.1016/s0009-2614(02)01499-9
Google Scholar
[25]
J. Liu et al., Fluorine effects on U (VI) sorption by hydroxyapatite, Chem. Eng. J. 288 (2016) 505–515.
Google Scholar
[26]
H. Tang et al., Ultrastable Hydroxyapatite/Titanium‐Dioxide‐Supported Gold Nanocatalyst with Strong Metal–Support Interaction for Carbon Monoxide Oxidation, Angew. Chemie Int. Ed. 55 (2016) 10606–10611.
DOI: 10.1002/anie.201601823
Google Scholar
[27]
W. Sun, J. Fan, S. Wang, Y. Kang, J. Du, and X. Peng, Biodegradable drug-loaded hydroxyapatite nanotherapeutic agent for targeted drug release in tumors, ACS Appl. Mater. Interfaces 10 (2018) 7832–7840.
DOI: 10.1021/acsami.7b19281
Google Scholar
[28]
T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, and K. Niihara, Formation of titanium oxide nanotube, Langmuir 14 (1998) 3160–3163.
DOI: 10.1021/la9713816
Google Scholar
[29]
R. A. Khan et al., Production and properties of nanocellulose-reinforced methylcellulose-based biodegradable films, J. Agric. Food Chem., vol. 58 (2010) 7878–7885.
DOI: 10.1021/jf1006853
Google Scholar
[30]
M. Szymańska-Chargot, M. Chylińska, P. M. Pieczywek, and A. Zdunek, Tailored nanocellulose structure depending on the origin. Example of apple parenchyma and carrot root celluloses, Carbohydr. Polym. 210 (2019) 186–195.
DOI: 10.1016/j.carbpol.2019.01.070
Google Scholar
[31]
Rahmi, Lelifajri, Julinawati, and Shabrina, Preparation of chitosan composite film reinforced with cellulose isolated from oil palm empty fruit bunch and application in cadmium ions removal from aqueous solutions, Carbohydr. Polym. 170 (2017) 226–233.
DOI: 10.1016/j.carbpol.2017.04.084
Google Scholar
[32]
A. N. Banerjee, S. W. Joo, and B.-K. Min, Photocatalytic degradation of organic dye by sol-gel-derived gallium-doped anatase titanium oxide nanoparticles for environmental remediation, J. Nanomater. (2012) (2012).
DOI: 10.1155/2012/201492
Google Scholar
[33]
S. H. Mousavi, F. Shokoofehpoor, and A. Mohammadi, Synthesis and characterization of γ-CD-modified TiO2 nanoparticles and its adsorption performance for different types of organic dyes, J. Chem. Eng. Data 64 (2018) 135–149.
DOI: 10.1021/acs.jced.8b00656
Google Scholar
[34]
L. T. S. Thao, T. T. T. Dang, W. Khanitchaidecha, D. Channei, and A. Nakaruk, Photocatalytic Degradation of Organic Dye under UV‐A Irradiation Using TiO2‐Vetiver Multifunctional Nano Particles, Materials (Basel). 10 (2017) 122.
DOI: 10.3390/ma10020122
Google Scholar
[35]
B. Lu, Y. Zhu, and F. Chen, Highly flexible and nonflammable inorganic hydroxyapatite paper, Chem. Eur. J. 20 (2014) 1242–1246.
DOI: 10.1002/chem.201304439
Google Scholar
[36]
F. Chen and Y.-J. Zhu, Large-scale automated production of highly ordered ultralong hydroxyapatite nanowires and construction of various fire-resistant flexible ordered architectures, ACS Nano 10 (2016) 11483–11495.
DOI: 10.1021/acsnano.6b07239
Google Scholar
[37]
Z. Xiong, Y. Zhu, D. Qin, F. Chen, and R. Yang, Flexible Fire‐Resistant Photothermal Paper Comprising Ultralong Hydroxyapatite Nanowires and Carbon Nanotubes for Solar Energy‐Driven Water Purification, Small, 14 (2018) 1803387.
DOI: 10.1002/smll.201803387
Google Scholar