Removal of Organic Dyes by Using Cellulose-Chitosan-Nanowires Hybrid Composition Beads

Article Preview

Abstract:

Organic dyes are mostly used in textile, paper, plastic, and other industries. These industries can be toxic and harmful to environment and human. Adsorption is the most efficient method to control wastewater that contains dyes. Cellulose-Chitosan beads was mainly used in the adsorption. To increase and enhance the organic dyes removal capacity of these beads, titanium dioxide nanowires (TiO2Nw) as used to achieve novel Cs-Cell-nanowires hybrid composites. Ultralong hydroxyapatite nanowires was prepared and used to enhance the mechanical and thermal properties of beads. On the other hand, the beads composition was prepared with spherical white shape. Internal structure of beads and other composition were studied by using Attenuated Total Reflectance (ATR) spectroscopy, scanning electron microscopy (SEM), lazer diffraction (LD), thermal analysis (TG, DSC, DTG, and DTA). The beads are tested with five different organic dyes which include Methyl blue (MB), Acid alizarin Black (AAB) as cationic dyes, and Methyl orang (MO), Methyl red (MR) and Eriochrome black T (EBT) as anionic dyes. The results indicate that the beads have the ability to remove MB, EBT,AAB but do not have the ability to remove MO and MR. So, the Cell-CS- HAPNw- TiO2Nw beads can be considered as the promising adsorption for MB, EBT, and AAB from aqueous solutions.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1002)

Pages:

468-477

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. T. Yagub, T. K. Sen, S. Afroze, and H. M. Ang, Dye and its removal from aqueous solution by adsorption: a review,, Adv. Colloid Interface Sci. 209 (2014) 172–184.

DOI: 10.1016/j.cis.2014.04.002

Google Scholar

[2] A. R. Cestari, E. F. S. Vieira, G. S. Vieira, and L. E. Almeida, Aggregation and adsorption of reactive dyes in the presence of an anionic surfactant on mesoporous aminopropyl silica,, J. Colloid Interface Sci. 309 (2007) 402–411.

DOI: 10.1016/j.jcis.2006.11.049

Google Scholar

[3] V. S. Mane and P. V. V. Babu, Kinetic and equilibrium studies on the removal of Congo red from aqueous solution using Eucalyptus wood (Eucalyptus globulus) saw dust,, J. Taiwan Inst. Chem. Eng. 44 (2013) 81–88.

DOI: 10.1016/j.jtice.2012.09.013

Google Scholar

[4] Y. Zhou, Z. Liang, and Y. Wang, Decolorization and COD removal of secondary yeast wastewater effluents by coagulation using aluminum sulfate, Desalination 225 (2008) 301–311.

DOI: 10.1016/j.desal.2007.07.010

Google Scholar

[5] E. R. Bandala, M. A. Peláez, A. J. García-López, M. de J. Salgado, and G. Moeller, Photocatalytic decolourisation of synthetic and real textile wastewater containing benzidine-based azo dyes,, Chem. Eng. Process. Process Intensif. 47 (2008)169–176.

DOI: 10.1016/j.cep.2007.02.010

Google Scholar

[6] B. E. Barragán, C. Costa, and M. C. Marquez, Biodegradation of azo dyes by bacteria inoculated on solid media, Dye. Pigment. 75 (2007) 73–81.

DOI: 10.1016/j.dyepig.2006.05.014

Google Scholar

[7] Y. Zheng, G. Yao, Q. Cheng, S. Yu, M. Liu, and C. Gao, Positively charged thin-film composite hollow fiber nanofiltration membrane for the removal of cationic dyes through submerged filtration, Desalination 328 (2013) 42–50.

DOI: 10.1016/j.desal.2013.08.009

Google Scholar

[8] Q. Liu, B. Yang, L. Zhang, and R. Huang, Adsorption of an anionic azo dye by cross-linked chitosan/bentonite composite, Int. J. Biol. Macromol. 72 (2015) 1129–1135.

DOI: 10.1016/j.ijbiomac.2014.10.008

Google Scholar

[9] R. C. Bansal and M. Goyal, Activated carbon adsorption. CRC press, (2005).

Google Scholar

[10] J.-S. Wu, C.-H. Liu, K. H. Chu, and S.-Y. Suen, Removal of cationic dye methyl violet 2B from water by cation exchange membranes, J. Memb. Sci. 309 (2008) 239–245.

DOI: 10.1016/j.memsci.2007.10.035

Google Scholar

[11] R. Ahmad and R. Kumar, Adsorptive removal of congo red dye from aqueous solution using bael shell carbon, Appl. Surf. Sci. 257 (2010) 1628–1633.

DOI: 10.1016/j.apsusc.2010.08.111

Google Scholar

[12] K. Nuithitikul, S. Srikhun, and S. Hirunpraditkoon, Kinetics and equilibrium adsorption of Basic Green 4 dye on activated carbon derived from durian peel: Effects of pyrolysis and post-treatment conditions, J. Taiwan Inst. Chem. Eng. 41 (2010) 591–598.

DOI: 10.1016/j.jtice.2010.01.007

Google Scholar

[13] R.-L. Tseng, F.-C. Wu, and R.-S. Juang, Characteristics and applications of the Lagergren's first-order equation for adsorption kinetics, J. Taiwan Inst. Chem. Eng., vol. 41 (2010) 661–669.

DOI: 10.1016/j.jtice.2010.01.014

Google Scholar

[14] M. Benavente, L. Moreno, and J. Martinez, Sorption of heavy metals from gold mining wastewater using chitosan, J. Taiwan Inst. Chem. Eng. 42 (2011) 976–988.

DOI: 10.1016/j.jtice.2011.05.003

Google Scholar

[15] B. K. Nandi, A. Goswami, and M. K. Purkait, Adsorption characteristics of brilliant green dye on kaolin, J. Hazard. Mater., vol. 161 (2009) 387–395.

DOI: 10.1016/j.jhazmat.2008.03.110

Google Scholar

[16] J. K. Gan, Y. S. Lim, N. M. Huang, and H. N. Lim, Boosting the supercapacitive properties of polypyrrole with chitosan and hybrid silver nanoparticles/nanoclusters, RSC Adv. 6 (2016) 88925–88933.

DOI: 10.1039/c6ra13697d

Google Scholar

[17] W. S. W. Ngah, L. C. Teong, and M. Hanafiah, Adsorption of dyes and heavy metal ions by chitosan composites: A review, Carbohydr. Polym. 83 (2011) 1446–1456.

DOI: 10.1016/j.carbpol.2010.11.004

Google Scholar

[18] M. K. Younis, A. Z. Tareq, and I. M. Kamal, Optimization Of Swelling, Drug Loading And Release From Natural Polymer Hydrogels, IOP Conference Series: Materials Science and Engineering, 454 (2018) 12017.

DOI: 10.1088/1757-899x/454/1/012017

Google Scholar

[19] U. Filipkowska, E. Klimiuk, S. Grabowski, and E. Siedlecka, Adsorption of reactive dyes by modified chitin from aqueous solutions," Polish J. Environ. Stud. 11 (2002) 315–324.

Google Scholar

[20] A. Z. Tareq, M. S. Hussien, A. M. Mustafa, and A. R. Mahmood, Extracting Cellulose Fibers from Rice Husks to Prepare a pH Sensitive Hydrogel with Sodium Alginate, in Recent Researches in Earth and Environmental Sciences, Springer, (2019), 113–124.

DOI: 10.1007/978-3-030-18641-8_8

Google Scholar

[21] K. Mukherjee, T.-H. Teng, R. Jose, and S. Ramakrishna, Electron transport in electrospun TiO 2 nanofiber dye-sensitized solar cells, Appl. Phys. Lett. 95 (2009) 12101.

DOI: 10.1063/1.3167298

Google Scholar

[22] T. Kisumi, A. Tsujiko, K. Murakoshi, and Y. Nakato, Crystal-face and illumination intensity dependences of the quantum efficiency of photoelectrochemical etching, in relation to those of water photooxidation, at n-TiO2 (rutile) semiconductor electrodes, J. Electroanal. Chem. 545 (2003) 99–107.

DOI: 10.1016/s0022-0728(03)00114-1

Google Scholar

[23] S. P. Albu, A. Ghicov, J. M. Macak, R. Hahn, and P. Schmuki, Self-organized, free-standing TiO2 nanotube membrane for flow-through photocatalytic applications, Nano Lett. 7 (2007) 1286–1289.

DOI: 10.1021/nl070264k

Google Scholar

[24] Y. X. Zhang, G. H. Li, Y. X. Jin, Y. Zhang, J. Zhang, and L. D. Zhang, Hydrothermal synthesis and photoluminescence of TiO2 nanowires, Chem. Phys. Lett., 365 (2002) 300-304.

DOI: 10.1016/s0009-2614(02)01499-9

Google Scholar

[25] J. Liu et al., Fluorine effects on U (VI) sorption by hydroxyapatite, Chem. Eng. J. 288 (2016) 505–515.

Google Scholar

[26] H. Tang et al., Ultrastable Hydroxyapatite/Titanium‐Dioxide‐Supported Gold Nanocatalyst with Strong Metal–Support Interaction for Carbon Monoxide Oxidation, Angew. Chemie Int. Ed. 55 (2016) 10606–10611.

DOI: 10.1002/anie.201601823

Google Scholar

[27] W. Sun, J. Fan, S. Wang, Y. Kang, J. Du, and X. Peng, Biodegradable drug-loaded hydroxyapatite nanotherapeutic agent for targeted drug release in tumors, ACS Appl. Mater. Interfaces 10 (2018) 7832–7840.

DOI: 10.1021/acsami.7b19281

Google Scholar

[28] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, and K. Niihara, Formation of titanium oxide nanotube, Langmuir 14 (1998) 3160–3163.

DOI: 10.1021/la9713816

Google Scholar

[29] R. A. Khan et al., Production and properties of nanocellulose-reinforced methylcellulose-based biodegradable films, J. Agric. Food Chem., vol. 58 (2010) 7878–7885.

DOI: 10.1021/jf1006853

Google Scholar

[30] M. Szymańska-Chargot, M. Chylińska, P. M. Pieczywek, and A. Zdunek, Tailored nanocellulose structure depending on the origin. Example of apple parenchyma and carrot root celluloses, Carbohydr. Polym. 210 (2019) 186–195.

DOI: 10.1016/j.carbpol.2019.01.070

Google Scholar

[31] Rahmi, Lelifajri, Julinawati, and Shabrina, Preparation of chitosan composite film reinforced with cellulose isolated from oil palm empty fruit bunch and application in cadmium ions removal from aqueous solutions, Carbohydr. Polym. 170 (2017) 226–233.

DOI: 10.1016/j.carbpol.2017.04.084

Google Scholar

[32] A. N. Banerjee, S. W. Joo, and B.-K. Min, Photocatalytic degradation of organic dye by sol-gel-derived gallium-doped anatase titanium oxide nanoparticles for environmental remediation, J. Nanomater. (2012) (2012).

DOI: 10.1155/2012/201492

Google Scholar

[33] S. H. Mousavi, F. Shokoofehpoor, and A. Mohammadi, Synthesis and characterization of γ-CD-modified TiO2 nanoparticles and its adsorption performance for different types of organic dyes, J. Chem. Eng. Data 64 (2018) 135–149.

DOI: 10.1021/acs.jced.8b00656

Google Scholar

[34] L. T. S. Thao, T. T. T. Dang, W. Khanitchaidecha, D. Channei, and A. Nakaruk, Photocatalytic Degradation of Organic Dye under UV‐A Irradiation Using TiO2‐Vetiver Multifunctional Nano Particles, Materials (Basel). 10 (2017) 122.

DOI: 10.3390/ma10020122

Google Scholar

[35] B. Lu, Y. Zhu, and F. Chen, Highly flexible and nonflammable inorganic hydroxyapatite paper, Chem. Eur. J. 20 (2014) 1242–1246.

DOI: 10.1002/chem.201304439

Google Scholar

[36] F. Chen and Y.-J. Zhu, Large-scale automated production of highly ordered ultralong hydroxyapatite nanowires and construction of various fire-resistant flexible ordered architectures, ACS Nano 10 (2016) 11483–11495.

DOI: 10.1021/acsnano.6b07239

Google Scholar

[37] Z. Xiong, Y. Zhu, D. Qin, F. Chen, and R. Yang, Flexible Fire‐Resistant Photothermal Paper Comprising Ultralong Hydroxyapatite Nanowires and Carbon Nanotubes for Solar Energy‐Driven Water Purification, Small, 14 (2018) 1803387.

DOI: 10.1002/smll.201803387

Google Scholar