Synthesis of some 2-Pyridones by Application of L-L Phase Transfer Catalysis Method

Article Preview

Abstract:

Phase transfer catalysis P.T.C is one of the most widely used techniques in the preparation of a wide range of compounds not only in organic chemistry but also a broadly useful in several other areas of chemistry. There have been extensive studies that have been used to synthesize many compounds that are biologically important with highly efficient and the percentage of the product and purity are high with perfect time. In this study, a number of chalcones were prepared and reacted with phenoxy acetamide, 4-methyl phenoxy acetamide and phenyl mercapto acetamide for the preparation of 2–pyridones compounds under phase transfer catalysis conditions. The reaction mechanism and the structure of the resulting compounds were determined using physical analysis methods IR and 1H-NMR. 13C-NMR was also measured for some compounds.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1002)

Pages:

448-456

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Albanese, Liquid–liquid phase transfer catalysis: basic principles and synthetic applications, Cata. Rev.: Sci. and Eng. 45:3-4 (2003) 369-395.

DOI: 10.1081/cr-120025538

Google Scholar

[2] G. Gokel, W. Weber, Phase transfer catalysis. Part I: General principles, J. Chem. Edu. 55 (1978) 352.

Google Scholar

[3] A. J. Burke, , C. S. Marques, N. J. Turner, G. J. Hermann, Active Pharmaceutical Ingredients in Synthesis: Catalytic Processes in Research and Development'', first ed., Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, (2018).

DOI: 10.1002/9783527807253

Google Scholar

[4] Z. Siddiqui, S. Praveen, T. Musthafa, A. Ahmad, A. Khan, Thermal solvent-free synthesis of chromonyl chalcones, pyrazolines and their in vitro antibacterial, antifungal activities, J. Enzy. Inhib. Med. Chem. 27, (2012) 84-91.

DOI: 10.3109/14756366.2011.577035

Google Scholar

[5] Z. Nowakowska, A review of anti-infective and anti-inflammatory chalcones, Eur. J. Med. Chem. 42 (2007) 125-137.

DOI: 10.1016/j.ejmech.2006.09.019

Google Scholar

[6] Y. Lin, Y. Zhou, M. Flavin, L. Zhou, W. Nie, F. Chen, Chalcones and flavonoids as anti-tuberculosis agents, Bioorg. Med. Chem. 10 (2002) 2795-2802.

DOI: 10.1016/s0968-0896(02)00094-9

Google Scholar

[7] R. Gacche, N. Dhole, S. Kamble, B. Bandgar, In-vitro evaluation of selected chalcones for antioxidant activity, J. Enzyme Inhib. Med. Chem. 23 (2008) 28-31.

DOI: 10.1080/14756360701306370

Google Scholar

[8] M. Bonesi, M. Loizzo, G. Statti, S. Michel, F. Tillequin, F. Menichini, The synthesis and angiotensin converting enzyme (ACE) inhibitory activity of chalcones and their pyrazole derivatives, Bioorg. Med. Chem. Lett. 20 (2010) 1990-1993.

DOI: 10.1016/j.bmcl.2010.01.113

Google Scholar

[9] N. Gorobets, B. Yousefi, F. Belaj, C. Kappe, Rapid microwave-assisted solution phase synthesis of substituted 2-pyridone libraries, Tetrahedron. 60 (2004) 8633––8644.

DOI: 10.1016/j.tet.2004.05.100

Google Scholar

[10] A. Fassihi, D. Abedi, L. Saghaie, R. Sabet, H. Fazeli, G. Bostaki, Synthesis, antimicrobial evaluation and QSAR study of some 3-hydroxypyridine-4-one and 3-hydroxypyran-4-one derivatives, Eur. J. Med. Chem. 44 (2009) 2145–2157.

DOI: 10.1016/j.ejmech.2008.10.022

Google Scholar

[11] R. Parreira, O. Abrahão, S. Galembeck, Conformational preferences of non-nucleoside HIV-1 reverse transcriptase inhibitors, Tetrahedron. 57 (2001) 3243–3253.

DOI: 10.1016/s0040-4020(01)00193-4

Google Scholar

[12] P. Dragovich, T. Prins, R. Zhou, E. Brown, F. Maldonado, S. Fuhrman, Structure-based design, synthesis, and biological evaluation of irreversible human rhinovirus 3c protease inhibitors, 6. structure−actvity studies of orally bioavailable, 2-pyridone-containing peptidomimetics, J. Med. Chem. 45 (2002) 1607–1623.

DOI: 10.1021/jm010469k

Google Scholar

[13] Q. Li, L. Mitscher, L. Shen, The 2-pyridone antibacterial agents: bacterial topoisomerase inhibitors, Med. Res. Rev. 20 (2000) 231–293.

DOI: 10.1002/1098-1128(200007)20:4<231::aid-med1>3.0.co;2-n

Google Scholar

[14] Y. Fujita, H. Oguri, H. Oikawa, Biosynthetic studies on the antibiotics PF1140: a novel pathway for a 2-pyridone framework, Tetrah. Lett. 46 (2005) 5885–5888.

DOI: 10.1016/j.tetlet.2005.06.115

Google Scholar

[15] G. Semple, B. Andersson, V. Chhajlani, J. Georgsson, M. Johansson and Å. Rosenquist, Synthesis and biological activity of kappa opioid receptor agonists.part 2: preparation of 3-aryl-2-pyridone analogues generated by solution- and solid-phase parallel synthesis methods, Bioorg. Med. Chem. Lett. 13 (2003) 1141–1145.

DOI: 10.1016/s0960-894x(03)00033-7

Google Scholar

[16] J. Parlow, R. Kurumbail, R. Stegeman, A. Stevens, W. Stallings, M. South, Design, Synthesis, and Crystal Structure of Selective 2-Pyridone Tissue Factor VIIa Inhibitors, J. Med. Chem. 46 (2003) 4696–4701.

DOI: 10.1021/jm0301686

Google Scholar

[17] J. Parlow, M. South, Synthesis of 2-pyridones as tissue factor VIIa inhibitors, Tetrahedron. 59 (2003) 7695–7701.

DOI: 10.1016/s0040-4020(03)01239-0

Google Scholar

[18] L. Hasvold, W. Wang, S. Gwaltney, T. Rockway, L. Nelson, R. Mantei, Pyridone containing farnesyl transferase inhibitors: synthesis and biological evaluation, Bioorg. Med. Chem. Lett. 13 (2003) 4001–4005.

DOI: 10.1016/j.bmcl.2003.08.058

Google Scholar

[19] D. Mijin, G. Ušćumlić, N. Valentić and A. Marinković, Sinteza arilazo piridonskih boja, Hem. Ind. 65 (2011) 517–532.

Google Scholar

[20] V. Litvinov, S. Krivokolysko, V. Dyachenko, Synthesis and properties of 3-cyanopyridine-2(1H)-chalcogenones: Review, Chem. Heterocyclic Comp. 35 (1999) 509–540.

DOI: 10.1007/bf02324634

Google Scholar

[21] N. Pemberton, E. Chorell, F. Almqvist, Microwave-assisted synthesis and functionalization of 2-pyridones,2-quinolones and other ring-fused 2-pyridones, Top. Heter. Chem. 1 (2006) 1–30.

DOI: 10.1007/7081_006

Google Scholar

[22] Z. Ismail, Reactivity of 1,3-diarylpropenones towards some nucleophilic reagents and screening of the biological activity of the products, J. of Amer. Sci. 9(7) (2013) 465-475.

Google Scholar

[23] M. Kachroo, R. Panda, Y. Yadav, Synthesis and biological activities of some new pyrimidine derivatives from chalcones, Der Pharm. Chem. 6(2) (2014) 352-359.

Google Scholar

[24] O. Mazimba, Antimicrobial activities of heterocycles derived from thienylchalcones, J. of King Saud Univ.–Sci. 27 (2015) 42–48.

DOI: 10.1016/j.jksus.2014.06.003

Google Scholar

[25] D. Patel, DR. D. J. SEN, Synthesis and biological screening of some pyridazine derivatives, IJPRBS. 3(2) (2014) 760-769.

Google Scholar

[26] E.Krein, Z.Aizenshat, Studies of heterocyclic compound, J. Org. Chem. 58 (1993) 6103 – 6108.

Google Scholar

[27] N. AL-Rayyes, F. AL-Hajjar, Heterocycles. Part V. Reaction of α,β-unsaturated carbonyl compounds with arylacetamides. A synthesis of 2‐pyridone derivatives, J. Heter. Chem. 21, (1984) 1473.

DOI: 10.1002/jhet.5570210549

Google Scholar

[28] M. Shandala, A. AL-Khashab, M.Afzal, S.S. Ahmed, Reactions of ethyl cinnamates with arylacetamides, J. Heter. Chem. 17 (1980) 1605.

DOI: 10.1002/jhet.5570170752

Google Scholar