[1]
M. Rezakazemi and Z. Zhang, 2.29 Desulfurization Materials,, in Comprehensive Energy Systems, I. Dincer, Ed. Oxford: Elsevier, 2018, pp.944-979.
DOI: 10.1016/b978-0-12-809597-3.00263-7
Google Scholar
[2]
A. T. Nawaf, S. A. Gheni, A. T. Jarullah, and I. M. Mujtaba, Improvement of fuel quality by oxidative desulfurization: Design of synthetic catalyst for the process,, Fuel Processing Technology, vol. 138, pp.337-343, 2015/10/01/ (2015).
DOI: 10.1016/j.fuproc.2015.05.033
Google Scholar
[3]
N. Brandon, E. Ruiz-Trejo, and P. Boldrin, Solid Oxide Fuel Cell Lifetime and Reliability: Critical Challenges in Fuel Cells. (2017).
DOI: 10.1016/b978-0-08-101102-7.00005-2
Google Scholar
[4]
S. Brunet, D. Mey, G. Pérot, C. Bouchy, and F. Diehl, On the hydrodesulfurization of FCC gasoline: a review,, Applied Catalysis A: General, vol. 278, no. 2, pp.143-172, 2005/01/10/ (2005).
DOI: 10.1016/j.apcata.2004.10.012
Google Scholar
[5]
C. Zhang, X. Pan, F. Wang, and X. Liu, Extraction–oxidation desulfurization by pyridinium-based task-specific ionic liquids,, Fuel, vol. 102, pp.580-584, 2012/12/01/ (2012).
DOI: 10.1016/j.fuel.2012.07.040
Google Scholar
[6]
F. Zeng, X. Liao, H. Hu, and L. Liao, Effect of potassium hydroxide activation in the desulfurization process of activated carbon prepared by sewage sludge and corn straw,, Journal of the Air & Waste Management Association, vol. 68, no. 3, pp.255-264, 2018/03/04 (2018).
DOI: 10.1080/10962247.2017.1407378
Google Scholar
[7]
M. Agarwal, P. K. Dikshit, J. B. Bhasarkar, A. J. Borah, and V. S. Moholkar, Physical insight into ultrasound-assisted biodesulfurization using free and immobilized cells of Rhodococcus rhodochrous MTCC 3552,, Chemical Engineering Journal, vol. 295, pp.254-267, 2016/07/01/ (2016).
DOI: 10.1016/j.cej.2016.03.042
Google Scholar
[8]
L. Gao, H. Wan, M. Han, and G. Guan, Deep Desulfurization of Model Oil by Extraction with a Low-viscosity Ionic Liquid [BMIM]SCN,, Petroleum Science and Technology, vol. 32, no. 11, pp.1309-1317, 2014/06/03 (2014).
DOI: 10.1080/10916466.2011.653466
Google Scholar
[9]
T. A. Saleh, M. N. Siddiqui, and A. A. Al-Arfaj, Kinetic and intraparticle diffusion studies of carbon nanotubes-titania for desulfurization of fuels,, Petroleum Science and Technology, vol. 34, no. 16, pp.1468-1474, 2016/08/17 (2016).
DOI: 10.1080/10916466.2016.1202972
Google Scholar
[10]
C. Shen, Y. J. Wang, J. H. Xu, Y. C. Lu, and G. S. Luo, Porous glass beads as a new adsorbent to remove sulfur-containing compounds,, Green Chemistry, 10.1039/C2GC16559G vol. 14, no. 4, pp.1009-1015, (2012).
DOI: 10.1039/c2gc16559g
Google Scholar
[11]
A. J. Hernández-Maldonado, F. H. Yang, G. Qi, and R. T. Yang, Desulfurization of transportation fuels by π-complexation sorbents: Cu(I)-, Ni(II)-, and Zn(II)-zeolites,, Applied Catalysis B: Environmental, vol. 56, no. 1, pp.111-126, 2005/03/10/ (2005).
DOI: 10.1016/j.apcatb.2004.06.023
Google Scholar
[12]
C. Sentorun-Shalaby, S. K. Saha, X. Ma, and C. Song, Mesoporous-molecular-sieve-supported nickel sorbents for adsorptive desulfurization of commercial ultra-low-sulfur diesel fuel,, Applied Catalysis B: Environmental, vol. 101, no. 3, pp.718-726, 2011/01/14/ (2011).
DOI: 10.1016/j.apcatb.2010.11.014
Google Scholar
[13]
J. H. Kim, X. Ma, A. Zhou, and C. Song, Ultra-deep desulfurization and denitrogenation of diesel fuel by selective adsorption over three different adsorbents: A study on adsorptive selectivity and mechanism,, Catalysis Today, vol. 111, no. 1, pp.74-83, 2006/01/15/ (2006).
DOI: 10.1016/j.cattod.2005.10.017
Google Scholar
[14]
M. Seredych and T. J. Bandosz, Adsorption of Dibenzothiophenes on Nanoporous Carbons: Identification of Specific Adsorption Sites Governing Capacity and Selectivity,, Energy & Fuels, vol. 24, no. 6, pp.3352-3360, 2010/06/17 (2010).
DOI: 10.1021/ef9015087
Google Scholar
[15]
X.-l. Tang, W. Qian, A. Hu, Y.-m. Zhao, N.-n. Fei, and L. Shi, Adsorption of Thiophene on Pt/Ag-Supported Activated Carbons Prepared by Ultrasonic-Assisted Impregnation,, Industrial & Engineering Chemistry Research, vol. 50, no. 15, pp.9363-9367, 2011/08/03 (2011).
DOI: 10.1021/ie2008778
Google Scholar
[16]
J. Xiao, G. Bian, W. Zhang, and Z. Li, Adsorption of Dibenzothiophene on Ag/Cu/Fe-Supported Activated Carbons Prepared by Ultrasonic-Assisted Impregnation,, Journal of Chemical & Engineering Data, vol. 55, no. 12, pp.5818-5823, 2010/12/09 (2010).
DOI: 10.1021/je1007795
Google Scholar
[17]
B. Xu et al., Competitive effect of KOH activation on the electrochemical performances of carbon nanotubes for EDLC: Balance between porosity and conductivity,, Electrochimica Acta, vol. 53, no. 26, pp.7730-7735, 2008/11/01/ (2008).
DOI: 10.1016/j.electacta.2008.05.033
Google Scholar
[18]
T. A. Saleh and G. I. Danmaliki, Influence of acidic and basic treatments of activated carbon derived from waste rubber tires on adsorptive desulfurization of thiophenes,, Journal of the Taiwan Institute of Chemical Engineers, vol. 60, no. J Hazard Mater 244–245 2013, pp.460-468, (2016).
DOI: 10.1016/j.jtice.2015.11.008
Google Scholar
[19]
E. Svinterikos, I. Zuburtikudis, and M. Al-Marzouqi, Carbon Nanomaterials for the Adsorptive Desulfurization of Fuels,, Journal of Nanotechnology, vol. 2019, p.13, 2019, Art. no. 2809867.
DOI: 10.1155/2019/2809867
Google Scholar
[20]
T. A. Saleh and G. I. Danmaliki, Influence of acidic and basic treatments of activated carbon derived from waste rubber tires on adsorptive desulfurization of thiophenes,, Journal of the Taiwan Institute of Chemical Engineers, vol. 60, pp.460-468, 2016/03/01/ (2016).
DOI: 10.1016/j.jtice.2015.11.008
Google Scholar
[21]
A. Mittal, L. Kurup, and J. Mittal, Freundlich and Langmuir adsorption isotherms and kinetics for the removal of Tartrazine from aqueous solutions using hen feathers,, Journal of Hazardous Materials, vol. 146, no. 1, pp.243-248, 2007/07/19/ (2007).
DOI: 10.1016/j.jhazmat.2006.12.012
Google Scholar
[22]
Y. Shu et al., Hierarchical porous carbons from polysaccharides carboxymethyl cellulose, bacterial cellulose, and citric acid for supercapacitor,, Carbohydrate Polymers, vol. 227, p.115346, 2020/01/01/ (2020).
DOI: 10.1016/j.carbpol.2019.115346
Google Scholar
[23]
J. Liu, Q. Wu, Q. Zhu, Y. Guan, and B. Xu, Hierarchical porous carbon prepared from mulberry leaves for supercapacitors,, Ionics, vol. 25, no. 10, pp.4935-4941, 2019/10/01 (2019).
DOI: 10.1007/s11581-019-03023-3
Google Scholar
[24]
M. Azhar et al., One Step Assembly of Thin Films of Carbon Nanotubes on Screen Printed Interface for Electrochemical Aptasensing of Breast Cancer Biomarker,, Sensors, vol. 2016, p.651, 10/06 (2016).
DOI: 10.3390/s16101651
Google Scholar
[25]
K. Kuśmierek and A. Świątkowski, The influence of different agitation techniques on the adsorption kinetics of 4-chlorophenol on granular activated carbon,, Reaction Kinetics, Mechanisms and Catalysis, vol. 116, no. 1, pp.261-271, 2015/10/01 (2015).
DOI: 10.1007/s11144-015-0889-1
Google Scholar
[26]
Y. Kismir and A. Z. Aroguz, Adsorption characteristics of the hazardous dye Brilliant Green on Saklıkent mud,, Chemical Engineering Journal, vol. 172, no. 1, pp.199-206, 2011/08/01/ (2011).
DOI: 10.1016/j.cej.2011.05.090
Google Scholar
[27]
S. S. Meshkat, A. Rashidi, and O. Tavakoli, Removal of mercaptan from natural gas condensate using N-doped carbon nanotube adsorbents: Kinetic and DFT study,, Journal of Natural Gas Science and Engineering, vol. 55, pp.288-297, 2018/07/01/ (2018).
DOI: 10.1016/j.jngse.2018.04.036
Google Scholar
[28]
G. I. Danmaliki and T. A. Saleh, Effects of bimetallic Ce/Fe nanoparticles on the desulfurization of thiophenes using activated carbon,, Chemical Engineering Journal, vol. 307, pp.914-927, 2017/01/01/ (2017).
DOI: 10.1016/j.cej.2016.08.143
Google Scholar
[29]
T. A. Saleh, K. O. Sulaiman, S. A. Al-Hammadi, H. Dafalla, and G. I. Danmaliki, Adsorptive desulfurization of thiophene, benzothiophene and dibenzothiophene over activated carbon manganese oxide nanocomposite: with column system evaluation,, Journal of Cleaner Production, vol. 154, pp.401-412, 2017/06/15/ (2017).
DOI: 10.1016/j.jclepro.2017.03.169
Google Scholar